Wang Hongyue, Guo Yangyang, Zang Jianyang, Hao Hongxing, Wang Le, Liu Taihong, Bian Hongtao, Jiang Ruibin, Wen Ruijuan, Li Huixin, Tong Yu, Wang Hongqiang
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene (NPU), Northwestern Polytechnical University, Xi'an 710072, P. R. China.
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
ACS Appl Mater Interfaces. 2021 Sep 22;13(37):44760-44767. doi: 10.1021/acsami.1c11995. Epub 2021 Sep 10.
The optical plasmonic cavity (OPC) including the metallic optical nanoantennas and a metal film exhibits extreme field enhancement for the increased spontaneous emission rate of emitters. The resonance wavelength of the OPC can be easily controlled by the volume of the OPC and the localized surface plasmonic resonances (LSPRs) of the nanoantennas, facilitating the effective coupling of OPC and the emitters. However, involving the OPC into the light emission-enhanced solution-processed devices is still a difficult challenge. The trade-off between the metallic structure of OPC and the solution procedures limits the performance enhancement of the electrical-driven devices. In this work, we construct a device-compatible OPC that allows the characterization of the carrier dynamics of quantum dot (QD) films in the real devices in-suit. The radiative recombination rate and relaxation rate of carriers in QDs are increased by the LSPR effect of the silver nanocubes for luminescence enhancement. The OPC further increases the spontaneous emission rate of QD films, achieving a Purcell factor of 166 and improving the electroluminescence of the OPC-based QD light-emitting diodes (QLEDs). The design of the OPC-involved QLEDs offers a solution for addressing the limitation of fabrication of OPC-combined solution-processed optoelectronic light sources.
包括金属光学纳米天线和金属膜的光学等离子体腔(OPC),对于提高发射体的自发发射率表现出极强的场增强作用。OPC的共振波长可以通过OPC的体积和纳米天线的局域表面等离子体共振(LSPRs)轻松控制,这有利于OPC与发射体之间的有效耦合。然而,将OPC应用于光发射增强的溶液处理器件仍然是一个艰巨的挑战。OPC的金属结构与溶液制备过程之间的权衡限制了电驱动器件性能的提升。在这项工作中,我们构建了一种与器件兼容的OPC,能够原位表征实际器件中量子点(QD)薄膜的载流子动力学。银纳米立方体的LSPR效应提高了量子点中载流子的辐射复合率和弛豫率,从而增强发光。OPC进一步提高了量子点薄膜的自发发射率,实现了166的珀塞尔因子,并改善了基于OPC的量子点发光二极管(QLED)的电致发光。涉及OPC的QLED的设计为解决OPC与溶液处理的光电子光源组合制造的局限性提供了一种解决方案。