Chen Fei, Lin Qingli, Wang Hongzhe, Wang Lei, Zhang Fengjuan, Du Zuliang, Shen Huaibin, Li Lin Song
Key Laboratory for Special Functional Materials, Henan University, Kaifeng, 475004, People's Republic of China.
Collaborative Innovation Center of Nano Functional Materials and Applications, Kaifeng, Henan Province, People's Republic of China.
Nanoscale Res Lett. 2016 Dec;11(1):376. doi: 10.1186/s11671-016-1573-8. Epub 2016 Aug 24.
In this paper, the performance of quantum dot-based light-emitting diodes (QLEDs) comprising ZnCdSe/ZnS core-shell QDs as an emitting layer were enhanced by employing Au-doped poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate (
PSS) hole injection layer (HIL). By varying the concentration and dimension of Au nanoparticle (NP) dopants in
PSS, the optimal devices were obtained with ~22-nm-sized Au NP dopant at the concentration with an optical density (OD) of 0.21. Highly bright green QLEDs with a maximum external quantum efficiency (EQE) of 8.2 % and a current efficiency of 29.1 cd/A exhibit 80 % improvement compared with devices without Au NP dopants. The improved performance may be attributed to the significant increase in the hole injection rate as a result of the introduction of Au NPs and the good matching between the resonance frequency of the localized surface plasmon resonance (LSPR) generated by the Au NPs and the emission band of QD layer, as well as the suppressed Auger recombination of QD layer due to the LSPR-induced near-field enhanced radiative recombination rate of excitons. These results are helpful for fabricating high-performance QD-based applications, such as full-color displays and solid-state lighting. 80 % enhancement of efficency of quantum dot-based light-emitting diodes with gold nanoparticle doped hole-injection-layer.
在本文中,通过采用金掺杂的聚(3,4 - 乙撑二氧噻吩)/聚苯乙烯磺酸盐(PEDOT:PSS)空穴注入层(HIL),增强了以ZnCdSe/ZnS核壳量子点作为发光层的基于量子点的发光二极管(QLED)的性能。通过改变PEDOT:PSS中金纳米颗粒(NP)掺杂剂的浓度和尺寸,在光学密度(OD)为0.21的浓度下,使用约22纳米大小的金NP掺杂剂获得了最佳器件。与没有金NP掺杂剂的器件相比,具有8.2%的最大外量子效率(EQE)和29.1 cd/A的电流效率的高亮度绿色QLED表现出80%的改善。性能的提高可能归因于金纳米颗粒的引入导致空穴注入速率显著增加,以及金纳米颗粒产生的局域表面等离子体共振(LSPR)的共振频率与量子点层的发射带之间的良好匹配,以及由于LSPR诱导的激子近场增强辐射复合速率而抑制了量子点层的俄歇复合。这些结果有助于制造基于量子点的高性能应用,如全彩显示器和固态照明。基于量子点的发光二极管采用金纳米颗粒掺杂空穴注入层后效率提高80%。