Suppr超能文献

TRP-BERT:基于 BERT 的深度双向转换器的上下文表示对瞬时受体电位 (TRP) 通道的判别。

TRP-BERT: Discrimination of transient receptor potential (TRP) channels using contextual representations from deep bidirectional transformer based on BERT.

机构信息

Department of Computer Science & Engineering, Yuan Ze University, Chungli, 32003, Taiwan.

Department of Computer Science & Engineering, Yuan Ze University, Chungli, 32003, Taiwan.

出版信息

Comput Biol Med. 2021 Oct;137:104821. doi: 10.1016/j.compbiomed.2021.104821. Epub 2021 Sep 1.

Abstract

Transient receptor potential (TRP) channels are non-selective cation channels that act as ion channels and are primarily found on the plasma membrane of numerous animal cells. These channels are involved in the physiology and pathophysiology of a wide variety of biological processes, including inhibition and progression of cancer, pain initiation, inflammation, regulation of pressure, thermoregulation, secretion of salivary fluid, and homeostasis of Ca and Mg. Increasing evidences indicate that mutations in the gene encoding TRP channels play an essential role in a broad array of diseases. Therefore, these channels are becoming popular as potential drug targets for several diseases. The diversified role of these channels demands a prediction model to classify TRP channels from other channel proteins (non-TRP channels). Therefore, we presented an approach based on the Support Vector Machine (SVM) classifier and contextualized word embeddings from Bidirectional Encoder Representations from Transformers (BERT) to represent protein sequences. BERT is a deeply bidirectional language model and a neural network approach to Natural Language Processing (NLP) that achieves outstanding performance on various NLP tasks. We apply BERT to generate contextualized representations for every single amino acid in a protein sequence. Interestingly, these representations are context-sensitive and vary for the same amino acid appearing in different positions in the sequence. Our proposed method showed 80.00% sensitivity, 96.03% specificity, 95.47% accuracy, and a 0.56 Matthews correlation coefficient (MCC) for an independent test set. We suggest that our proposed method could effectively classify TRP channels from non-TRP channels and assist biologists in identifying new potential TRP channels.

摘要

瞬时受体电位 (TRP) 通道是非选择性阳离子通道,作为离子通道,主要存在于许多动物细胞的质膜上。这些通道参与多种生物过程的生理学和病理生理学,包括癌症的抑制和进展、疼痛的起始、炎症、压力调节、体温调节、唾液分泌的调节以及 Ca 和 Mg 的稳态。越来越多的证据表明,TRP 通道编码基因的突变在广泛的疾病中起着至关重要的作用。因此,这些通道作为多种疾病的潜在药物靶点变得越来越受欢迎。这些通道的多样化作用要求有一种预测模型来区分 TRP 通道和其他通道蛋白(非 TRP 通道)。因此,我们提出了一种基于支持向量机 (SVM) 分类器和来自变压器的双向编码器表示 (BERT) 的上下文化词嵌入的方法,用于表示蛋白质序列。BERT 是一种深度双向语言模型和神经网络方法,用于自然语言处理 (NLP),在各种 NLP 任务中都取得了出色的性能。我们应用 BERT 为蛋白质序列中的每个单个氨基酸生成上下文化表示。有趣的是,这些表示是上下文敏感的,对于出现在序列中不同位置的相同氨基酸,它们会有所不同。我们提出的方法在独立测试集上表现出 80.00%的灵敏度、96.03%的特异性、95.47%的准确性和 0.56 的马修斯相关系数 (MCC)。我们建议,我们提出的方法可以有效地将 TRP 通道与非 TRP 通道区分开来,并帮助生物学家识别新的潜在 TRP 通道。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验