Suppr超能文献

基于激光诱导石墨烯和 MXene 的灵活虚拟传感器阵列,用于检测人体呼吸中的挥发性有机化合物。

A flexible virtual sensor array based on laser-induced graphene and MXene for detecting volatile organic compounds in human breath.

机构信息

State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang 310027, China.

Laboratory of Agricultural Information Intelligent Sensing, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.

出版信息

Analyst. 2021 Sep 13;146(18):5704-5713. doi: 10.1039/d1an01059j.

Abstract

Detecting volatile organic compounds (VOCs) in human breath is critical for the early diagnosis of diseases. Good selectivity of VOC sensors is crucial for the accurate analysis of VOC biomarkers in human breath, which consists of more than 200 types of VOCs. In this paper, a flexible virtual sensor array (FVSA) was proposed based on a sensing layer of MXene and laser-induced graphene interdigital electrodes (LIG-IDEs) for detecting VOCs in exhaled human breath. The fabrication of LIG-IDEs avoids the costly and complicated procedures required for the preparation of traditional IDEs. The FVSA's responses of multiple parameters help build a unique fingerprint for each VOC, without a need for changing the temperature of the sensing element, which is commonly used in the VSA of semiconductor VOC sensors. Based on machine learning algorithms, we have achieved highly precise recognition of different VOCs and mixtures and accurate prediction (accuracy of 89.1%) of the objective VOC's concentration in variable backgrounds using this proposed FVSA. Moreover, a blind analysis validates the capacity of the FVSA to identify alcohol content in human breath with an accuracy of 88.9% using breath samples from volunteers before and after alcohol consumption. These results show that the proposed FVSA is promising for the detection of VOC biomarkers in human exhaled breath and early diagnosis of diseases.

摘要

检测人体呼吸中的挥发性有机化合物(VOCs)对于疾病的早期诊断至关重要。VOC 传感器具有良好的选择性对于准确分析人体呼吸中的 VOC 生物标志物至关重要,因为人体呼吸中的 VOC 生物标志物包含 200 多种类型的 VOC。本文提出了一种基于 MXene 传感层和激光诱导石墨烯叉指电极(LIG-IDEs)的柔性虚拟传感器阵列(FVSA),用于检测人体呼气中的 VOC。LIG-IDEs 的制造避免了传统 IDE 制备所需的昂贵且复杂的步骤。FVSA 对多个参数的响应有助于为每种 VOC 建立独特的指纹,而无需像半导体 VOC 传感器的 VSA 那样改变传感元件的温度。基于机器学习算法,我们已经实现了对不同 VOC 和混合物的高精度识别,以及对不同背景下目标 VOC 浓度的准确预测(准确率为 89.1%)。此外,使用志愿者饮酒前后的呼吸样本进行的盲分析验证了该 FVSA 能够以 88.9%的准确率识别人体呼吸中的酒精含量。这些结果表明,所提出的 FVSA 有望用于检测人体呼出的 VOC 生物标志物和疾病的早期诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验