Suppr超能文献

一种关于规则抽象、注意学习和语境调制的认知范畴学习模型。

A cognitive category-learning model of rule abstraction, attention learning, and contextual modulation.

机构信息

Department of General Psychology.

School of Psychology.

出版信息

Psychol Rev. 2022 Nov;129(6):1211-1248. doi: 10.1037/rev0000321. Epub 2021 Sep 13.

Abstract

We introduce the Category Abstraction Learning (CAL) model, a cognitive framework formally describing category learning built on similarity-based generalization, dissimilarity-based abstraction, two attention learning mechanisms, error-driven knowledge structuring, and stimulus memorization. Our hypotheses draw on an array of empirical and theoretical insights connecting reinforcement and category learning. The key novelty of the model is its explanation of how rules are learned from scratch based on three central assumptions. (a) Category rules emerge from two processes of stimulus generalization (similarity) and its direct inverse (category contrast) on independent dimensions. (b) Two attention mechanisms guide learning by focusing on rules, or on the contexts in which they produce errors. (c) Knowing about these contexts inhibits executing the rule, without correcting it, and consequently leads to applying partial rules in different situations. The model is designed to capture both systematic and individual differences in a broad range of learning paradigms. We illustrate the model's explanatory scope by simulating several benchmarks, including the classic Six Problems, the 5-4 problem, and linear separability. Beyond the common approach of predicting average response probabilities, we also propose explanations for more recently studied phenomena that challenge existing learning accounts, regarding task instructions, individual differences in rule extrapolation in three different tasks, individual attention shifts to stimulus features during learning, and other phenomena. We discuss CAL's relation to different models, and its potential to measure the cognitive processes regarding attention, abstraction, error detection, and memorization from multiple psychological perspectives. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

摘要

我们介绍了类别抽象学习 (CAL) 模型,这是一个认知框架,正式描述了基于相似性泛化、基于不相似性抽象、两种注意力学习机制、错误驱动的知识结构和刺激记忆的类别学习。我们的假设借鉴了一系列将强化和类别学习联系起来的经验和理论见解。该模型的主要新颖之处在于,它解释了如何基于三个核心假设从 scratch 中学习规则。(a) 类别规则源自刺激泛化(相似性)及其直接逆(类别对比)在独立维度上的两个过程。(b) 两种注意力机制通过关注规则或产生错误的规则的上下文来指导学习。(c) 了解这些上下文会抑制执行规则,而不会纠正它,从而导致在不同情况下应用部分规则。该模型旨在捕捉广泛的学习范式中的系统和个体差异。我们通过模拟几个基准来说明模型的解释范围,包括经典的六个问题、5-4 问题和线性可分离性。除了预测平均反应概率的常见方法之外,我们还提出了对最近研究的一些现象的解释,这些现象挑战了现有的学习解释,涉及任务说明、在三个不同任务中规则外推的个体差异、学习过程中对刺激特征的个体注意力转移以及其他现象。我们讨论了 CAL 与不同模型的关系,以及它从多个心理学角度衡量注意力、抽象、错误检测和记忆等认知过程的潜力。(PsycInfo 数据库记录(c)2023 APA,保留所有权利)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验