Suppr超能文献

基于长短期记忆网络的 conotoxin 类型预测。

Prediction of conotoxin type based on long short-term memory network.

机构信息

Changzhou University Huaide College, China.

Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China.

出版信息

Math Biosci Eng. 2021 Aug 9;18(5):6700-6708. doi: 10.3934/mbe.2021332.

Abstract

Aiming at the problems of the wet experiment method in identifying the types of conotoxins, such as the complexity, low efficiency and high cost, this study proposes a method that uses the sequence information of the conotoxin peptides combined with long short term memory networks (LSTM) models to predict the Methods of spirotoxin category. This method only needs to take the conotoxin peptide sequence as input, and adopts the character embedding method in text processing to automatically map the sequence to the feature vector representation, and the model extracts features for training and prediction. Experimental results show that the correct index of this method on the test set reaches 0.80, and the AUC value reaches 0.817. For the same test set, the AUC value of the KNN algorithm is 0.641, and the AUC value of the method proposed in this paper is 0.817, indicating that this method can effectively assist in identifying the type of conotoxin.

摘要

针对湿实验方法在鉴定 conotoxin 类型时存在的复杂性、低效率和高成本等问题,本研究提出了一种利用 conotoxin 肽序列信息结合长短期记忆网络(LSTM)模型来预测 spirotoxin 类方法的方法。该方法仅需以 conotoxin 肽序列作为输入,采用文本处理中的字符嵌入方法将序列自动映射到特征向量表示中,模型则提取特征进行训练和预测。实验结果表明,该方法在测试集上的正确指数达到 0.80,AUC 值达到 0.817。对于相同的测试集,KNN 算法的 AUC 值为 0.641,而本文提出的方法的 AUC 值为 0.817,表明该方法可以有效辅助鉴定 conotoxin 的类型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验