Suppr超能文献

构建和改进集成尖峰神经网络和卷积长短期记忆算法的英语词汇学习模型。

Construction and improvement of English vocabulary learning model integrating spiking neural network and convolutional long short-term memory algorithm.

机构信息

Nanyang Medical College, Nanyang, Henan, China.

出版信息

PLoS One. 2024 Mar 22;19(3):e0299425. doi: 10.1371/journal.pone.0299425. eCollection 2024.

Abstract

To help non-native English speakers quickly master English vocabulary, and improve reading, writing, listening and speaking skills, and communication skills, this study designs, constructs, and improves an English vocabulary learning model that integrates Spiking Neural Network (SNN) and Convolutional Long Short-Term Memory (Conv LSTM) algorithms. The fusion of SNN and Conv LSTM algorithm can fully utilize the advantages of SNN in processing temporal information and Conv LSTM in sequence data modeling, and implement a fusion model that performs well in English vocabulary learning. By adding information transfer and interaction modules, the feature learning and the timing information processing are optimized to improve the vocabulary learning ability of the model in different text contents. The training set used in this study is an open data set from the WordNet and Oxford English Corpus data corpora. The model is presented as a computer program and applied to an English learning application program, an online vocabulary learning platform, or a language education software. The experiment will use the open data set to generate a test set with text volume ranging from 100 to 4000. The performance indicators of the proposed fusion model are compared with those of five traditional models and applied to the latest vocabulary exercises. From the perspective of learners, 10 kinds of model accuracy, loss, polysemy processing accuracy, training time, syntactic structure capturing accuracy, vocabulary coverage, F1-score, context understanding accuracy, word sense disambiguation accuracy, and word order relation processing accuracy are considered. The experimental results reveal that the performance of the fusion model is better under different text sizes. In the range of 100-400 text volume, the accuracy is 0.75-0.77, the loss is less than 0.45, the F1-score is greater than 0.75, the training time is within 300s, and the other performance indicators are more than 65%; In the range of 500-1000 text volume, the accuracy is 0.81-0.83, the loss is not more than 0.40, the F1-score is not less than 0.78, the training time is within 400s, and the other performance indicators are above 70%; In the range of 1500-3000 text volume, the accuracy is 0.82-0.84, the loss is less than 0.28, the F1-score is not less than 0.78, the training time is within 600s, and the remaining performance indicators are higher than 70%. The fusion model can adapt to various types of questions in practical application. After the evaluation of professional teachers, the average scores of the choice, filling-in-the-blank, spelling, matching, exercises, and synonyms are 85.72, 89.45, 80.31, 92.15, 87.62, and 78.94, which are much higher than other traditional models. This shows that as text volume increases, the performance of the fusion model is gradually improved, indicating higher accuracy and lower loss. At the same time, in practical application, the fusion model proposed in this study has a good effect on English learning tasks and offers greater benefits for people unfamiliar with English vocabulary structure, grammar, and question types. This study aims to provide efficient and accurate natural language processing tools to help non-native English speakers understand and apply language more easily, and improve English vocabulary learning and comprehension.

摘要

为了帮助非英语母语人士快速掌握英语词汇,提高阅读、写作、听力和口语技能以及沟通能力,本研究设计、构建和改进了一种将尖峰神经网络(SNN)和卷积长短期记忆(Conv LSTM)算法集成的英语词汇学习模型。SNN 和 Conv LSTM 算法的融合可以充分利用 SNN 在处理时间信息方面的优势和 Conv LSTM 在序列数据建模方面的优势,实现了在英语词汇学习方面表现良好的融合模型。通过添加信息传递和交互模块,优化特征学习和定时信息处理,提高模型在不同文本内容下的词汇学习能力。本研究使用的训练集是来自 WordNet 和牛津英语语料库数据语料库的公开数据集。该模型被呈现为一个计算机程序,并应用于英语学习应用程序、在线词汇学习平台或语言教育软件。实验将使用公开数据集生成文本量在 100 到 4000 之间的测试集。与五个传统模型相比,提出的融合模型的性能指标应用于最新的词汇练习。从学习者的角度来看,考虑了 10 种模型准确性、损失、多义词处理准确性、训练时间、句法结构捕捉准确性、词汇覆盖率、F1 分数、上下文理解准确性、词义消歧准确性和词序关系处理准确性。实验结果表明,融合模型在不同的文本大小下表现更好。在 100-400 个文本量范围内,准确率为 0.75-0.77,损失小于 0.45,F1 分数大于 0.75,训练时间在 300s 以内,其他性能指标均大于 65%;在 500-1000 个文本量范围内,准确率为 0.81-0.83,损失不超过 0.40,F1 分数不低于 0.78,训练时间在 400s 以内,其他性能指标均在 70%以上;在 1500-3000 个文本量范围内,准确率为 0.82-0.84,损失小于 0.28,F1 分数不低于 0.78,训练时间在 600s 以内,其余性能指标均高于 70%。融合模型可以适应实际应用中的各种类型的问题。经过专业教师的评估,选择、填空、拼写、匹配、练习和同义词的平均分数为 85.72、89.45、80.31、92.15、87.62 和 78.94,均高于其他传统模型。这表明随着文本量的增加,融合模型的性能逐渐提高,准确率更高,损失更小。同时,在实际应用中,本研究提出的融合模型对英语学习任务有较好的效果,为不熟悉英语词汇结构、语法和题型的人提供了更大的益处。本研究旨在提供高效准确的自然语言处理工具,帮助非英语母语人士更轻松地理解和应用语言,提高英语词汇学习和理解能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801b/10959372/2e75375f1da7/pone.0299425.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验