Yan Wen-Yuan, Zhang Cheng, Liu Lin
State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
ACS Appl Mater Interfaces. 2021 Sep 29;13(38):45385-45393. doi: 10.1021/acsami.1c10564. Epub 2021 Sep 14.
Electrochemical CO reduction reaction (CORR) coupled with hydrogen evolution reaction (HER) is a renewable route to produce syngas (CO + H), an essential feedstock for liquid fuel production. However, the development of high-performance electrocatalyst with tunable H/CO ratio, high-rate syngas production, and long-term electrochemical stability remains challenging. Here, a metal three-dimensional (3D) printing technique followed by dealloying was utilized to develop three-dimensional hierarchical porous (termed as 3D hp) CuAg catalysts for the concurrent generation of CO and H. By purposely designing the precursor compositions, the resultant 3D hp CuAg catalysts with a high density of phase-segregated Ag and Cu nanodomains exhibit a tunable H/CO ratio from 3:1 to 1:2. Through further porosity engineering, the 3D hp CuAg catalysts show significantly enhanced syngas production rate of 140 μmol/h/cm and electrochemical stability up to 140 h (which is the highest value reported so far). The remarkable electrochemical stability of the 3D hp CuAg arises from three-level hierarchical porous configurations, wherein the macroporous structure benefits gas bubble growth and detachment, the microporous structure stabilizes the active nanoporous layer, while the nanoporous structure provides a large active surface area and enables efficient mass transfer. The results of this study offer a new vision for the development of hierarchically porous catalysts for CO reduction.
电化学CO还原反应(CORR)与析氢反应(HER)耦合是生产合成气(CO + H)的可再生途径,合成气是液体燃料生产的重要原料。然而,开发具有可调H/CO比、高速率合成气生产和长期电化学稳定性的高性能电催化剂仍然具有挑战性。在此,采用金属三维(3D)打印技术随后进行脱合金化,以开发用于同时生成CO和H的三维分级多孔(称为3D hp)CuAg催化剂。通过有意设计前驱体组成,所得具有高密度相分离Ag和Cu纳米域的3D hp CuAg催化剂表现出从3:1到1:2的可调H/CO比。通过进一步的孔隙率工程,3D hp CuAg催化剂显示出合成气产率显著提高,达到140 μmol/h/cm,电化学稳定性高达140小时(这是迄今为止报道的最高值)。3D hp CuAg卓越的电化学稳定性源于三级分级多孔结构,其中大孔结构有利于气泡生长和脱离,微孔结构稳定活性纳米多孔层,而纳米多孔结构提供大的活性表面积并实现高效传质。本研究结果为开发用于CO还原的分级多孔催化剂提供了新的视角。