Jalili-Firoozinezhad Sasan, Bein Amir, Gazzaniga Francesca S, Fadel Cicely W, Novak Richard, Ingber Donald E
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
Methods Mol Biol. 2022;2373:69-85. doi: 10.1007/978-1-0716-1693-2_5.
It is impossible to analyze human-specific host-microbiome interactions using animal models and existing in vitro methods fail to support survival of human cells in direct contact with complex living microbiota for extended times. Here we describe a protocol for culturing human organ-on-a-chip (Organ Chip) microfluidic devices lined by human patient-derived primary intestinal epithelium in the presence of a physiologically relevant transluminal hypoxia gradient that enables their coculture with hundreds of different living aerobic and anaerobic bacteria found within the human gut microbiome. This protocol can be adapted to provide different levels of oxygen tension to facilitate coculturing of microbiome from different regions of gastrointestinal tract, and the same system can be applied with any other type of Organ Chip. This method can help to provide further insight into the host-microbiome interactions that contribute to human health and disease, enable discovery of new microbiome-related diagnostics and therapeutics, and provide a novel approach to advanced personalized medicine.
使用动物模型无法分析人类特有的宿主-微生物组相互作用,而现有的体外方法也无法支持人类细胞与复杂的活微生物群直接接触并长时间存活。在此,我们描述了一种培养人源器官芯片(Organ Chip)微流控装置的方案,该装置由人类患者来源的原代肠上皮细胞内衬,在生理相关的跨腔缺氧梯度条件下,能够与人类肠道微生物组中发现的数百种不同的需氧和厌氧活细菌进行共培养。该方案可进行调整,以提供不同水平的氧张力,便于胃肠道不同区域的微生物组进行共培养,并且同一系统可应用于任何其他类型的器官芯片。这种方法有助于进一步深入了解对人类健康和疾病有影响的宿主-微生物组相互作用,发现新的微生物组相关诊断方法和治疗方法,并为先进的个性化医疗提供一种新途径。