文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于在工程化体外模型中培养人体肠道微生物群的技术工具和策略。

Technological tools and strategies for culturing human gut microbiota in engineered in vitro models.

机构信息

Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milan, Italy.

Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

出版信息

Biotechnol Bioeng. 2021 Aug;118(8):2886-2905. doi: 10.1002/bit.27816. Epub 2021 May 24.


DOI:10.1002/bit.27816
PMID:33990954
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8361989/
Abstract

The gut microbiota directly impacts the pathophysiology of different human body districts. Consequently, microbiota investigation is an hot topic of research and its in vitro culture has gained extreme interest in different fields. However, the high sensitivity of microbiota to external stimuli, such as sampling procedure, and the physicochemical complexity of the gut environment make its in vitro culture a challenging task. New engineered microfluidic gut-on-a-chip devices have the potential to model some important features of the intestinal structure, but they are usually unable to sustain culture of microbiota over an extended period of time. The integration of gut-on-a-chip devices with bioreactors for continuous bacterial culture would lead to fast advances in the study of microbiota-host crosstalk. In this review, we summarize the main technologies for the continuous culture of microbiota as upstream systems to be coupled with microfluidic devices to study bacteria-host cells communication. The engineering of integrated microfluidic platforms, capable of sustaining both anaerobic and aerobic cultures, would be the starting point to unveil complex biological phenomena proper of the microbiota-host crosstalks, paving to way to multiple research and technological applications.

摘要

肠道微生物群直接影响人体不同部位的病理生理学。因此,微生物组的研究是一个热门的研究课题,其体外培养在不同领域引起了极大的兴趣。然而,微生物对外界刺激(如采样程序)非常敏感,且肠道环境的物理化学性质复杂,这使得其体外培养成为一项具有挑战性的任务。新型工程化的肠道芯片设备具有模拟肠道结构一些重要特征的潜力,但通常无法长时间维持微生物群落的培养。将肠道芯片设备与生物反应器集成用于连续细菌培养,将推动对微生物组-宿主相互作用的研究取得快速进展。在这篇综述中,我们总结了用于微生物群连续培养的主要技术,作为上游系统与微流控设备相结合,以研究细菌-宿主细胞的通讯。能够维持厌氧和需氧培养的集成微流控平台的工程化将是揭示属于微生物组-宿主相互作用的复杂生物学现象的起点,为多种研究和技术应用铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ee0/8361989/88419efb94e5/BIT-118-2886-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ee0/8361989/e4cae1f90d50/BIT-118-2886-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ee0/8361989/dcc39cb3104a/BIT-118-2886-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ee0/8361989/867b0048359e/BIT-118-2886-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ee0/8361989/88419efb94e5/BIT-118-2886-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ee0/8361989/e4cae1f90d50/BIT-118-2886-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ee0/8361989/dcc39cb3104a/BIT-118-2886-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ee0/8361989/867b0048359e/BIT-118-2886-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ee0/8361989/88419efb94e5/BIT-118-2886-g005.jpg

相似文献

[1]
Technological tools and strategies for culturing human gut microbiota in engineered in vitro models.

Biotechnol Bioeng. 2021-8

[2]
Microfluidic Gut-on-a-Chip: Fundamentals and Challenges.

Biosensors (Basel). 2023-1-13

[3]
Establishment of a Modular Anaerobic Human Intestine Chip.

Methods Mol Biol. 2022

[4]
A microfluidic-based gut-on-a-chip model containing the gut microbiota of patients with depression reveals physiological characteristics similar to depression.

Lab Chip. 2024-4-30

[5]
A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip.

Nat Biomed Eng. 2019-5-13

[6]
[Advances of gut-on-a-chip for exploring host-microbe interactions].

Sheng Wu Gong Cheng Xue Bao. 2024-9-25

[7]
Human Gut-Microbiota Interaction in Neurodegenerative Disorders and Current Engineered Tools for Its Modeling.

Front Cell Infect Microbiol. 2020

[8]
Relevance of organ(s)-on-a-chip systems to the investigation of food-gut microbiota-host interactions.

Crit Rev Microbiol. 2022-8

[9]
Intestinal Models for Personalized Medicine: from Conventional Models to Microfluidic Primary Intestine-on-a-chip.

Stem Cell Rev Rep. 2022-8

[10]
Gut-on-a-Chip for the Analysis of Bacteria-Bacteria Interactions in Gut Microbial Community: What Would Be Needed for Bacterial Co-Culture Study to Explore the Diet-Microbiota Relationship?

Nutrients. 2023-2-23

引用本文的文献

[1]
Structural and functional characterization of a porcine intestinal microbial ecosystem developed in vitro.

Sci Rep. 2025-7-10

[2]
Understanding dysbiosis and resilience in the human gut microbiome: biomarkers, interventions, and challenges.

Front Microbiol. 2025-3-4

[3]
Modulation of gut microbiome in response to the combination of Nissle 1917 and sugars: a pilot study using host-free system reflecting impact on interpersonal microbiome.

Front Nutr. 2024-10-22

[4]
Tracing the path of Quorum sensing molecules in cystic fibrosis mucus in a biomimetic in vitro permeability platform.

Sci Rep. 2024-10-29

[5]
Cultivating complexity: Advancements in establishing in vitro models for the mucus-adhering gut microbiota.

Microb Biotechnol. 2024-10

[6]
Cellular and Microbial In Vitro Modelling of Gastrointestinal Cancer.

Cancers (Basel). 2024-9-9

[7]
Microfluidic gut-axis-on-a-chip models for pharmacokinetic-based disease models.

Biomicrofluidics. 2024-6-26

[8]
Impact of cryoprotective agents on human gut microbes and in vitro stabilized artificial gut microbiota communities.

Microb Biotechnol. 2024-6

[9]
Preservation of conjugated primary bile acids by oxygenation of the small intestinal microbiota .

mBio. 2024-6-12

[10]
A novel "microbiota-host interaction model" to study the real-time effects of fermentation of non-digestible carbohydrate (NDCs) on gut barrier function.

Curr Res Food Sci. 2024-4-16

本文引用的文献

[1]
Towards bioinspired models of intestinal mucus.

RSC Adv. 2019-5-21

[2]
Short-Chain Fatty Acid Production by Gut Microbiota from Children with Obesity Differs According to Prebiotic Choice and Bacterial Community Composition.

mBio. 2020-8-11

[3]
Human Gut-Microbiota Interaction in Neurodegenerative Disorders and Current Engineered Tools for Its Modeling.

Front Cell Infect Microbiol. 2020

[4]
Interindividual Variation in Dietary Carbohydrate Metabolism by Gut Bacteria Revealed with Droplet Microfluidic Culture.

mSystems. 2020-6-30

[5]
The Antioxidants Glutathione, Ascorbic Acid and Uric Acid Maintain Butyrate Production by Human Gut Clostridia in The Presence of Oxygen In Vitro.

Sci Rep. 2020-5-7

[6]
Current Sampling Methods for Gut Microbiota: A Call for More Precise Devices.

Front Cell Infect Microbiol. 2020

[7]
A new protectant medium preserving bacterial viability after freeze drying.

Microbiol Res. 2020-3-6

[8]
An Integrated Multi-Disciplinary Perspectivefor Addressing Challenges of the Human Gut Microbiome.

Metabolites. 2020-3-6

[9]
Use of Changestat for Growth Rate Studies of Gut Microbiota.

Front Bioeng Biotechnol. 2020-2-7

[10]
The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication.

Front Endocrinol (Lausanne). 2020-1-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索