Tarimo Clifford Silver, Bhuyan Soumitra S, Li Quanman, Ren Weicun, Mahande Michael Johnson, Wu Jian
Department of Epidemiology and Health Statistics, Zhengzhou University, Zhengzhou, People's Republic of China.
Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, Dar es Salaam, Tanzania.
Risk Manag Healthc Policy. 2021 Sep 7;14:3711-3720. doi: 10.2147/RMHP.S331077. eCollection 2021.
The goal of this study was to establish the most efficient boosting method in predicting neonatal low Apgar scores following labor induction intervention and to assess whether resampling strategies would improve the predictive performance of the selected boosting algorithms.
A total of 7716 singleton births delivered from 2000 to 2015 were analyzed. Cesarean deliveries following labor induction, deliveries with abnormal presentation, and deliveries with missing Apgar score or delivery mode information were excluded. We examined the effect of resampling approaches or data preprocessing on predicting low Apgar scores, specifically the synthetic minority oversampling technique (SMOTE), borderline-SMOTE, and the random undersampling (RUS) technique. Sensitivity, specificity, precision, area under receiver operating curve (AUROC), F-score, positive predicted values (PPV), negative predicted values (NPV) and accuracy of the three (3) boosting-based ensemble methods were used to evaluate their discriminative ability. The ensemble learning models tested include adoptive boosting (AdaBoost), gradient boosting (GB) and extreme gradient boosting method (XGBoost).
The prevalence of low (<7) Apgar scores was 9.5% (n = 733). The prediction models performed nearly similar in their baseline mode. Following the application of resampling techniques, borderline-SMOTE significantly improved the predictive performance of all the boosting-based ensemble methods under observation in terms of sensitivity, F1-score, AUROC and PPV.
Policymakers, healthcare informaticians and neonatologists should consider implementing data preprocessing strategies when predicting a neonatal outcome with imbalanced data to enhance efficiency. The process may be more effective when borderline-SMOTE technique is deployed on the selected ensemble classifiers. However, future research may focus on testing additional resampling techniques, performing feature engineering, variable selection and optimizing further the ensemble learning hyperparameters.
本研究的目的是确定预测引产干预后新生儿低Apgar评分的最有效提升方法,并评估重采样策略是否会提高所选提升算法的预测性能。
分析了2000年至2015年期间共7716例单胎分娩。排除引产术后剖宫产、胎位异常分娩以及Apgar评分或分娩方式信息缺失的分娩。我们研究了重采样方法或数据预处理对预测低Apgar评分的影响,特别是合成少数过采样技术(SMOTE)、边界SMOTE和随机欠采样(RUS)技术。使用三种基于提升的集成方法的灵敏度、特异性、精度、受试者操作特征曲线下面积(AUROC)、F分数、阳性预测值(PPV)、阴性预测值(NPV)和准确性来评估它们的判别能力。测试的集成学习模型包括自适应提升(AdaBoost)、梯度提升(GB)和极端梯度提升方法(XGBoost)。
低(<7)Apgar评分的发生率为9.5%(n = 733)。预测模型在其基线模式下表现几乎相似。应用重采样技术后,边界SMOTE在灵敏度、F1分数、AUROC和PPV方面显著提高了所有观察到的基于提升的集成方法的预测性能。
政策制定者、医疗保健信息专家和新生儿科医生在使用不平衡数据预测新生儿结局时应考虑实施数据预处理策略以提高效率。当在选定的集成分类器上部署边界SMOTE技术时,该过程可能会更有效。然而,未来的研究可能集中在测试额外的重采样技术、进行特征工程、变量选择以及进一步优化集成学习超参数。