Suppr超能文献

用于实现高效钙钛矿太阳能电池的 SnO 纳米颗粒的多功能表面工程

Multiple-Function Surface Engineering of SnO Nanoparticles to Achieve Efficient Perovskite Solar Cells.

作者信息

Wang Hui, Yuan Jifeng, Xi Jiahao, Du Jiuyao, Tian Jianjun

机构信息

Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.

出版信息

J Phys Chem Lett. 2021 Sep 23;12(37):9142-9148. doi: 10.1021/acs.jpclett.1c02682. Epub 2021 Sep 15.

Abstract

The mismatched energy-level alignment and interface defects of the SnO nanoparticles' electron transport layer (ETL) and perovskite layer worsen the efficiency of the perovskite solar cell. Herein, we devise a multiple-function surface engineering of SnO nanoparticles. TBA ions improve the dispersion and stability of colloidal T-SnO nanoparticles and act as a bridge between the ETL and perovskite layer through the electrostatic interaction with anions, thus suppressing the charge recombination and reducing the energy loss. I ions passivate oxygen vacancies of SnO nanoparticles but also halide vacancies of the perovskite layer. Furthermore, the conduction band edge of T-SnO is enhanced to match the energy alignment with the perovskite, which reduces the energy offset for electron transfer. As a result, the champion solar cell based on T-SnO presented a power conversion efficiency of 21.71% with a of 1.15 V and negligible hysteresis, which are much higher than those of the reference device.

摘要

SnO纳米颗粒电子传输层(ETL)与钙钛矿层之间不匹配的能级排列和界面缺陷会降低钙钛矿太阳能电池的效率。在此,我们设计了一种SnO纳米颗粒的多功能表面工程。TBA离子改善了胶体T-SnO纳米颗粒的分散性和稳定性,并通过与阴离子的静电相互作用在ETL和钙钛矿层之间起到桥梁作用,从而抑制电荷复合并减少能量损失。I离子不仅钝化了SnO纳米颗粒的氧空位,还钝化了钙钛矿层的卤化物空位。此外,T-SnO的导带边缘得到增强,以与钙钛矿的能量排列相匹配,这减少了电子转移的能量偏移。结果,基于T-SnO的冠军太阳能电池的功率转换效率为21.71%,开路电压为1.15 V,滞后可忽略不计,远高于参考器件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验