Singh Omkar, Venugopal Pushyaraga P, Mathur Apoorva, Chakraborty Debashree
Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Mangalore, Karnataka 575025, India.
J Phys Chem B. 2021 Sep 30;125(38):10672-10681. doi: 10.1021/acs.jpcb.1c05795. Epub 2021 Sep 15.
Understanding the dynamics of the SARS CoV-2 RNA genome and its dependence on temperature is necessary to fight the current COVID-19 crisis. Computationally, the handling of large data is a major challenge in the elucidation of the structures of RNA. This work presents network analysis as an important tool to see the conformational evolution and the most dominant structures of the RNA genome at six different temperatures. It effectively distinguished different communities of RNA having structural variation. It is found that at higher temperatures (348 K and above), 80% of the RNA structure is destroyed in both the SPC/E and mTIP3P water models. The thermal denaturation free energy change ΔΔ value calculated for the long-lived structure at higher temperatures of 348 and 363 K ranges from 2.58 to 2.78 kcal/mol for the SPC/E water model, which agrees well with the experimentally reported thermal denaturation free energy range of 2.874 kcal/mol of SARS CoV-NP at normal pH. At higher temperatures, the stability of RNA conformation is found to be due to the existence of non-native base pairs in the SPC/E water model.
了解严重急性呼吸综合征冠状病毒2(SARS-CoV-2)RNA基因组的动态变化及其对温度的依赖性,对于应对当前的2019冠状病毒病(COVID-19)危机至关重要。在计算方面,处理大数据是阐明RNA结构的一项重大挑战。这项工作将网络分析作为一种重要工具,以观察RNA基因组在六个不同温度下的构象演变和最主要的结构。它有效地区分了具有结构变异的不同RNA群落。研究发现,在较高温度(348 K及以上)下,SPC/E和mTIP3P水模型中80%的RNA结构被破坏。在348和363 K的较高温度下,为长寿命结构计算的热变性自由能变化ΔΔ值,对于SPC/E水模型而言,范围在2.58至2.78千卡/摩尔之间,这与在正常pH值下实验报道的SARS-CoV-NP热变性自由能范围2.874千卡/摩尔非常吻合。在较高温度下,发现RNA构象的稳定性归因于SPC/E水模型中存在非天然碱基对。