Feshchenko R M, Popov A V
P.N. Lebedev Physical Institute of RAS, 53 Leninski Prospekt, 119991 Moscow, Russia.
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation of RAS, Troitsk, 142190 Moscow region, Russia.
Phys Rev E. 2021 Aug;104(2-2):025306. doi: 10.1103/PhysRevE.104.025306.
In this paper an exact transparent boundary condition for the multidimensional Schrödinger equation in a hyperrectangular computational domain is proposed. It is derived as a generalization of exact transparent boundary conditions for two-dimensional (2D) and 3D equations reported before. An exact fully discrete (i.e., derived directly from the finite-difference scheme used) 1D transparent boundary condition is also proposed. Several numerical experiments using an improved unconditionally stable numerical implementation in the 3D space demonstrate propagation of Gaussian wave packets in free space and penetration of a particle through a 3D spherically asymmetrical barrier. The application of the multidimensional transparent boundary condition to the dynamics of the 2D system of two noninteracting particles is considered. The proposed boundary condition is simple, robust, and can be useful in the field of computational quantum mechanics, when an exact solution of the multidimensional Schrödinger equation (including multiparticle problems) is required.
本文提出了超矩形计算域中多维薛定谔方程的精确透明边界条件。它是作为之前报道的二维(2D)和三维方程精确透明边界条件的推广而推导出来的。还提出了精确的全离散(即直接从所用的有限差分格式推导而来)一维透明边界条件。在三维空间中使用改进的无条件稳定数值实现进行的几个数值实验表明了高斯波包在自由空间中的传播以及粒子通过三维球对称势垒的穿透。考虑了多维透明边界条件在两个非相互作用粒子的二维系统动力学中的应用。所提出的边界条件简单、稳健,在需要多维薛定谔方程(包括多粒子问题)精确解的计算量子力学领域可能会很有用。