You Jian Wei, Ma Qian, Lan Zhihao, Xiao Qiang, Panoiu Nicolae C, Cui Tie Jun
Department of Electronic and Electrical Engineering, University College London, London, UK.
State Key Laboratory of Millimeter Waves and Institute of Electromagnetic Space, Southeast University, Nanjing, China.
Nat Commun. 2021 Sep 15;12(1):5468. doi: 10.1038/s41467-021-25835-6.
Topological photonics has revolutionized our understanding of light propagation, providing a robust way to manipulate light. So far, most of studies in this field are focused on designing a static photonic structure. Developing a dynamic photonic topological platform to switch multiple topological functionalities at ultrafast speed is still a great challenge. Here we theoretically propose and experimentally demonstrate a reprogrammable plasmonic topological insulator, where the topological propagation route can be dynamically changed at nanosecond-level switching time, leading to an experimental demonstration of ultrafast multi-channel optical analog-digital converter. Due to the innovative use of electric switches to implement the programmability of plasmonic topological insulator, each unit cell can be encoded by dynamically controlling its digital plasmonic states while keeping its geometry and material parameters unchanged. Our reprogrammable topological plasmonic platform is fabricated by the printed circuit board technology, making it much more compatible with integrated photoelectric systems. Furthermore, due to its flexible programmability, many photonic topological functionalities can be integrated into this versatile topological platform.
拓扑光子学彻底改变了我们对光传播的理解,为操纵光提供了一种可靠的方法。到目前为止,该领域的大多数研究都集中在设计静态光子结构上。开发一个能够以超快速度切换多种拓扑功能的动态光子拓扑平台仍然是一个巨大的挑战。在此,我们从理论上提出并通过实验证明了一种可重新编程的表面等离激元拓扑绝缘体,其中拓扑传播路径可以在纳秒级的切换时间内动态改变,从而实现了超快多通道光模拟 - 数字转换器的实验演示。由于创新性地使用电开关来实现表面等离激元拓扑绝缘体的可编程性,每个单元胞在保持其几何形状和材料参数不变的情况下,可以通过动态控制其数字表面等离激元状态进行编码。我们的可重新编程拓扑表面等离激元平台是通过印刷电路板技术制造的,使其与集成光电系统具有更高的兼容性。此外,由于其灵活的可编程性,许多光子拓扑功能可以集成到这个多功能拓扑平台中。