Suppr超能文献

大数据和人工智能在医疗保健中的重要应用。

Influential Usage of Big Data and Artificial Intelligence in Healthcare.

机构信息

Foreign Language Department, Luoyang Institute of Science and Technology, Luoyang, Henan, China.

Foreign Language Department/Language and Cognition Center, Hunan University, Changsha, Hunan, China.

出版信息

Comput Math Methods Med. 2021 Sep 6;2021:5812499. doi: 10.1155/2021/5812499. eCollection 2021.

Abstract

Artificial intelligence (AI) is making computer systems capable of executing human brain tasks in many fields in all aspects of daily life. The enhancement in information and communications technology (ICT) has indisputably improved the quality of people's lives around the globe. Especially, ICT has led to a very needy and tremendous improvement in the health sector which is commonly known as electronic health (eHealth) and medical health (mHealth). Deep machine learning and AI approaches are commonly presented in many applications using big data, which consists of all relevant data about the medical health and diseases which a model can access at the time of execution or diagnosis of diseases. For example, cardiovascular imaging has now accurate imaging combined with big data from the eHealth record and pathology to better characterize the disease and personalized therapy. In clinical work and imaging, cancer care is getting improved by knowing the tumor biology and helping in the implementation of precision medicine. The Markov model is used to extract new approaches for leveraging cancer. In this paper, we have reviewed existing research relevant to eHealth and mHealth where various models are discussed which uses big data for the diagnosis and healthcare system. This paper summarizes the recent promising applications of AI and big data in medical health and electronic health, which have potentially added value to diagnosis and patient care.

摘要

人工智能(AI)正在使计算机系统能够在日常生活的各个方面执行人类大脑的任务。信息和通信技术(ICT)的增强无疑提高了全球人民的生活质量。特别是,ICT 已经导致医疗保健(eHealth)和医疗保健(mHealth)领域的非常需要和巨大改进。深度学习和人工智能方法通常在使用大数据的许多应用程序中呈现,这些应用程序包含与医疗保健和疾病相关的所有数据,模型在执行或诊断疾病时可以访问这些数据。例如,心血管成像现在结合了来自电子健康记录和病理学的大数据进行精确成像,以更好地描述疾病和个性化治疗。在临床工作和成像中,通过了解肿瘤生物学并帮助实施精准医学,癌症护理得到了改善。马尔可夫模型用于提取利用癌症的新方法。在本文中,我们回顾了与电子健康和移动健康相关的现有研究,其中讨论了各种使用大数据进行诊断和医疗保健系统的模型。本文总结了人工智能和大数据在医疗保健和电子健康中的最新有前途的应用,这些应用有可能为诊断和患者护理增加价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ab1/8437645/b523309c2274/CMMM2021-5812499.001.jpg

相似文献

1
Influential Usage of Big Data and Artificial Intelligence in Healthcare.
Comput Math Methods Med. 2021 Sep 6;2021:5812499. doi: 10.1155/2021/5812499. eCollection 2021.
2
Perspective of artificial intelligence in healthcare data management: A journey towards precision medicine.
Comput Biol Med. 2023 Aug;162:107051. doi: 10.1016/j.compbiomed.2023.107051. Epub 2023 May 30.
3
Application of artificial intelligence in gastroenterology: Potential role in clinical practice.
J Gastroenterol Hepatol. 2021 Feb;36(2):267-272. doi: 10.1111/jgh.15403.
4
Applications of Artificial Intelligence and Big Data Analytics in m-Health: A Healthcare System Perspective.
J Healthc Eng. 2020 Aug 30;2020:8894694. doi: 10.1155/2020/8894694. eCollection 2020.
6
Artificial Intelligence in Cardiovascular Imaging: JACC State-of-the-Art Review.
J Am Coll Cardiol. 2019 Mar 26;73(11):1317-1335. doi: 10.1016/j.jacc.2018.12.054.
7
eHealth and Clinical Documentation Systems.
Stud Health Technol Inform. 2020 Sep 25;274:174-188. doi: 10.3233/SHTI200676.
8
Big Data in Ophthalmology.
Asia Pac J Ophthalmol (Phila). 2020 Jul-Aug;9(4):291-298. doi: 10.1097/APO.0000000000000304.
9
For a critical appraisal of artificial intelligence in healthcare: The problem of bias in mHealth.
J Eval Clin Pract. 2021 Jun;27(3):513-519. doi: 10.1111/jep.13528. Epub 2020 Dec 23.
10
Involvement of Machine Learning Tools in Healthcare Decision Making.
J Healthc Eng. 2021 Jan 27;2021:6679512. doi: 10.1155/2021/6679512. eCollection 2021.

引用本文的文献

1
Evaluation of retinal structure changes with AI-based OCT image segmentation for sodium iodate induced retinal degeneration.
Front Cell Neurosci. 2025 Jun 18;19:1605639. doi: 10.3389/fncel.2025.1605639. eCollection 2025.
5
From Data to Insights: How Is AI Revolutionizing Small-Bowel Endoscopy?
Diagnostics (Basel). 2024 Jan 29;14(3):291. doi: 10.3390/diagnostics14030291.
6
Applications of digital Medicine in oncology: Prospects and challenges.
Cancer Innov. 2022 Dec 4;1(4):285-292. doi: 10.1002/cai2.37. eCollection 2022 Dec.
8
Retracted: Influential Usage of Big Data and Artificial Intelligence in Healthcare.
Comput Math Methods Med. 2023 Oct 11;2023:9854236. doi: 10.1155/2023/9854236. eCollection 2023.
9
Artificial intelligence in medicine: A comprehensive survey of medical doctor's perspectives in Portugal.
PLoS One. 2023 Sep 7;18(9):e0290613. doi: 10.1371/journal.pone.0290613. eCollection 2023.
10
Precision Medicine 2.0: How Digital Health and AI Are Changing the Game.
J Pers Med. 2023 Jun 28;13(7):1057. doi: 10.3390/jpm13071057.

本文引用的文献

1
Utilizing electronic health data and machine learning for the prediction of 30-day unplanned readmission or all-cause mortality in heart failure.
Cardiovasc Digit Health J. 2020 Oct 22;1(2):71-79. doi: 10.1016/j.cvdhj.2020.07.004. eCollection 2020 Sep-Oct.
2
A big-data approach to producing descriptive anthropometric references: a feasibility and validation study of paediatric growth charts.
Lancet Digit Health. 2019 Dec;1(8):e413-e423. doi: 10.1016/S2589-7500(19)30149-9. Epub 2019 Nov 7.
3
Predictive models on COVID 19: What Africans should do?
Infect Dis Model. 2021;6:302-312. doi: 10.1016/j.idm.2020.10.015. Epub 2020 Nov 17.
4
Learning Bayesian networks from demographic and health survey data.
J Biomed Inform. 2021 Jan;113:103588. doi: 10.1016/j.jbi.2020.103588. Epub 2020 Nov 17.
5
The Veterans Affairs Precision Oncology Data Repository, a Clinical, Genomic, and Imaging Research Database.
Patterns (N Y). 2020 Aug 17;1(6):100083. doi: 10.1016/j.patter.2020.100083. eCollection 2020 Sep 11.
6
From multisource data to clinical decision aids in radiation oncology: The need for a clinical data science community.
Radiother Oncol. 2020 Dec;153:43-54. doi: 10.1016/j.radonc.2020.09.054. Epub 2020 Oct 13.
7
Artificial intelligence (AI) and big data in cancer and precision oncology.
Comput Struct Biotechnol J. 2020 Aug 28;18:2300-2311. doi: 10.1016/j.csbj.2020.08.019. eCollection 2020.
8
Artificial intelligence in COVID-19 drug repurposing.
Lancet Digit Health. 2020 Dec;2(12):e667-e676. doi: 10.1016/S2589-7500(20)30192-8. Epub 2020 Sep 18.
9
A Learning-Based Model to Evaluate Hospitalization Priority in COVID-19 Pandemics.
Patterns (N Y). 2020 Sep 11;1(6):100092. doi: 10.1016/j.patter.2020.100092. Epub 2020 Aug 3.
10
Machine-Learning Approaches in COVID-19 Survival Analysis and Discharge-Time Likelihood Prediction Using Clinical Data.
Patterns (N Y). 2020 Aug 14;1(5):100074. doi: 10.1016/j.patter.2020.100074. Epub 2020 Jul 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验