Suppr超能文献

质谱生物传感:用于临床生物分子多重分析的强大方法。

Mass Spectrometric Biosensing: A Powerful Approach for Multiplexed Analysis of Clinical Biomolecules.

机构信息

College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China.

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

出版信息

ACS Sens. 2021 Oct 22;6(10):3517-3535. doi: 10.1021/acssensors.1c01394. Epub 2021 Sep 16.

Abstract

Rapid and sensitive detection of clinical biomolecules in a multiplexed fashion is of great importance for accurate diagnosis of diseases. Mass spectrometric (MS) approaches are exceptionally suitable for clinical analysis due to its high throughput, high sensitivity, and reliable qualitative and quantitative capabilities. To break through the bottleneck of MS technique for detecting high-molecular-weight substances with low ionization efficiency, the concept of mass spectrometric biosensing has been put forward by adopting mass spectrometric chips to recognize the targets and mass spectrometry to detect the signals switched by the recognition. In this review, the principle of mass spectrometric sensing, the construction of different mass tags used for biosensing, and the typical combination mode of mass spectrometric imaging (MSI) technique are summarized. Future perspectives including the design of portable matching platforms, exploitation of novel mass tags, development of effective signal amplification strategies, and standardization of MSI methodologies are proposed to promote the advancements and practical applications of mass spectrometric biosensing.

摘要

快速、灵敏地以多重方式检测临床生物分子对于疾病的准确诊断非常重要。由于其高通量、高灵敏度以及可靠的定性和定量能力,质谱 (MS) 方法非常适合临床分析。为了突破 MS 技术检测低离子化效率的高分子量物质的瓶颈,通过采用质谱芯片来识别靶标以及通过识别进行质谱检测的信号转换,提出了质谱传感的概念。在这篇综述中,总结了质谱传感的原理、用于生物传感的不同质量标记的构建以及质谱成像 (MSI) 技术的典型组合模式。提出了包括便携式匹配平台的设计、新型质量标记的开发、有效信号放大策略的发展以及 MSI 方法学的标准化等未来展望,以促进质谱传感的发展和实际应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验