Department of Biochemistry, The University of Iowa, Iowa City, IA, 52246, USA.
Department of Biochemistry, The University of Iowa, Iowa City, IA, 52246, USA.
Chem Biol Interact. 2021 Nov 1;349:109650. doi: 10.1016/j.cbi.2021.109650. Epub 2021 Sep 13.
X-Ray crystallography shows that the hydroxyl group of Thr-45 in the fermentative alcohol dehydrogenase (ADH1) from Saccharomyces cerevisiae is hydrogen-bonded to the hydroxyl group of the alcohol bound to the catalytic zinc and is part of a proton relay system linked to His-48. The contribution of Thr-45 to catalysis was studied with steady state kinetics of the enzyme with the T45G substitution. Affinities for coenzymes decrease by only 2-4-fold, but the turnover numbers (V/E) and catalytic efficiencies (V/KE) decrease 480-fold and 2900-fold for the oxidation of ethanol and 450-fold and 8400-fold for acetaldehyde reduction, respectively, relative to wild-type enzyme. Binding of NADH appears to require protonation of a group with a pK value of ∼7.4 in wild-type ADH1, but the pK value for T45G ADH1 appears to be less than 5. For wild-type enzyme, the pH dependencies for ethanol oxidation (V/E and V/KE) are maximal above pK values of 7.0-7.7 and are attributed to the ionization of the alcohol or water bound to the catalytic zinc facilitated by His-48 in the enzyme-NAD complexes. For T45G ADH1, these pK values are shifted to 6.3. The reduction of acetaldehyde (V/E and V/KE) modestly increases as the pH increases for wild-type and T45G enzymes. The removal of the hydroxyethyl group of Thr-45 disrupts the connection of the oxygen of ligands bound to the catalytic zinc with the proton relay system and formation of productive catalytic states. The conformational change of the enzyme and the exchange of ligands on the catalytic zinc can also be affected. Assignments of groups responsible for the pK values are discussed in the context of studies on other forms of horse liver and yeast ADHs. The substitutions with Ala-45 and Cys-45 in yeast ADH1 and the homologous substitutions with Ala-48 in horse and human liver ADHs also significantly decrease catalytic efficiency. Threonine or serine residues at this position in alcohol dehydrogenases are highly conserved and contribute substantially to catalysis.
X 射线晶体学表明,酿酒酵母发酵醇脱氢酶(ADH1)中 Thr-45 的羟基与结合在催化锌上的醇的羟基形成氢键,并且是与 His-48 相连的质子传递系统的一部分。通过 Thr-45 到 T45G 取代的酶的稳态动力学研究了 Thr-45 对催化的贡献。辅酶的亲和力仅降低 2-4 倍,但对于乙醇的氧化, turnover 数(V/E)和催化效率(V/KE)分别降低 480 倍和 2900 倍,对于乙醛还原,分别降低 450 倍和 8400 倍,与野生型酶相比。NADH 的结合似乎需要在野生型 ADH1 中具有 pK 值约为 7.4 的基团的质子化,但 T45G ADH1 的 pK 值似乎小于 5。对于野生型酶,乙醇氧化(V/E 和 V/KE)的 pH 依赖性在 pK 值大于 7.0-7.7 时最大,并且归因于 His-48 在酶-NAD 复合物中促进与催化锌结合的醇或水的离解。对于 T45G ADH1,这些 pK 值转移到 6.3。对于野生型和 T45G 酶,随着 pH 值的增加,乙醛的还原(V/E 和 V/KE)适度增加。 Thr-45 的羟乙基的去除破坏了与催化锌结合的配体的氧与质子传递系统的连接以及形成生产性催化状态的连接。酶的构象变化和催化锌上配体的交换也可能受到影响。在对其他形式的马肝和酵母 ADH 的研究背景下讨论了负责 pK 值的基团的分配。酵母 ADH1 中的 Ala-45 和 Cys-45 取代以及马和人肝 ADH 中的同源 Ala-48 取代也显著降低了催化效率。在醇脱氢酶中该位置的苏氨酸或丝氨酸残基高度保守,并且对催化有很大贡献。