Suppr超能文献

估算脑自动调节的置信区间:一种参数 bootstrap 方法。

Estimating confidence intervals for cerebral autoregulation: a parametric bootstrap approach.

机构信息

Faculty of Engineering, University of Southampton, Highfield, Southampton, United Kingdom.

Department of Medical Physics, University Hospital Southampton NHS Foundation Trust, Southampton, Hampshire, United Kingdom.

出版信息

Physiol Meas. 2021 Oct 29;42(10). doi: 10.1088/1361-6579/ac27b8.

Abstract

Cerebral autoregulation (CA) refers to the ability of the brain vasculature to control blood flow in the face of changing blood pressure. One of the methods commonly used to assess cerebral autoregulation, especially in participants at rest, is the analysis of phase derived from transfer function analysis (TFA), relating arterial blood pressure (ABP) to cerebral blood flow (CBF). This and other indexes of CA can provide consistent results when comparing groups of subjects (e.g. patients and healthy controls or normocapnia and hypercapnia) but can be quite variable within and between individuals. The objective of this paper is to present a novel parametric bootstrap method, used to estimate the sampling distribution and hence confidence intervals (CIs) of the mean phase estimate in the low-frequency band, in order to optimise estimation of measures of CA function and allow more robust inferences on the status of CA from individual recordings. A set of simulations was used to verify the proposed method under controlled conditions. In 20 healthy adult volunteers (age 25.53.5 years), ABP and CBF velocity (CBFV) were measured at rest, using a Finometer device and Transcranial Doppler (applied to the middle cerebral artery), respectively. For each volunteer, five individual recordings were taken on different days, each approximately 18 min long. Phase was estimated using TFA. Analysis of recorded data showed widely changing CIs over the duration of recordings, which could be reduced when noisy data and frequencies with low coherence were excluded from the analysis (Wilcoxon signed rank test= 0.0065). The TFA window-lengths of 50s gave smaller CIs than lengths of 100s (< 0.001) or 20s (< 0.001), challenging the usual recommendation of 100s. The method adds a much needed flexible statistical tool for CA analysis in individual recordings.

摘要

脑自动调节(CA)是指脑血管在血压变化时控制脑血流量的能力。评估脑自动调节的常用方法之一是传递函数分析(TFA)相位分析,该方法将动脉血压(ABP)与脑血流(CBF)相关联。这种方法和其他 CA 指标在比较受试者群体(例如患者和健康对照者或正常碳酸血症和高碳酸血症)时可以提供一致的结果,但在个体内部和之间可能会有很大的变化。本文的目的是介绍一种新的参数自举方法,用于估计低频带中平均相位估计的采样分布,从而优化 CA 功能的测量,并允许从个体记录中对 CA 的状态进行更稳健的推断。在受控条件下使用一组模拟来验证所提出的方法。在 20 名健康成年志愿者(年龄 25.5±3.5 岁)中,使用 Finometer 设备和经颅多普勒(应用于大脑中动脉)分别在休息时测量 ABP 和 CBF 速度(CBFV)。对于每个志愿者,在不同的日子进行了五次单独的记录,每次记录大约 18 分钟。使用 TFA 估计相位。对记录数据的分析表明,在记录期间 CIs 变化很大,可以通过从分析中排除噪声数据和相干性低的频率来减少 CIs(Wilcoxon 符号秩检验=0.0065)。TFA 窗口长度为 50s 时的 CIs 小于 100s(<0.001)或 20s(<0.001)时的 CIs,这对通常推荐的 100s 提出了挑战。该方法为个体记录中的 CA 分析增加了急需的灵活统计工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验