The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.
Department of Life Sciences, Santa Monica College, Santa Monica, California, USA.
Dev Dyn. 2022 Mar;251(3):481-497. doi: 10.1002/dvdy.419. Epub 2021 Oct 8.
While much is known about the genetic regulation of early valvular morphogenesis, mechanisms governing fetal valvular growth and remodeling remain unclear. Hemodynamic forces strongly influence morphogenesis, but it is unknown whether or how they interact with valvulogenic signaling programs. Side-specific activity of valvulogenic programs motivates the hypothesis that shear stress pattern-specific endocardial signaling controls the elongation of leaflets.
We determined that extension of the semilunar valve occurs via fibrosa sided endocardial proliferation. Low OSS was necessary and sufficient to induce canonical Wnt/β-catenin activation in fetal valve endothelium, which in turn drives BMP receptor/ligand expression, and pSmad1/5 activity essential for endocardial proliferation. In contrast, ventricularis endocardial cells expressed active Notch1 but minimal pSmad1/5. Endocardial monolayers exposed to LSS attenuate Wnt signaling in a Notch1 dependent manner.
Low OSS is transduced by endocardial cells into canonical Wnt signaling programs that regulate BMP signaling and endocardial proliferation. In contrast, high LSS induces Notch signaling in endocardial cells, inhibiting Wnt signaling and thereby restricting growth on the ventricular surface. Our results identify a novel mechanically regulated molecular switch, whereby fluid shear stress drives the growth of valve endothelium, orchestrating the extension of the valve in the direction of blood flow.
虽然人们对早期瓣膜形态发生的遗传调控有了很多了解,但控制胎儿瓣膜生长和重塑的机制仍不清楚。血流动力强烈影响形态发生,但尚不清楚它们是否以及如何与瓣膜发生信号程序相互作用。瓣膜发生程序的侧特异性活性促使这样的假设,即剪切力模式特异性心内膜信号控制瓣叶的伸长。
我们确定半月瓣的延伸是通过纤维层心内膜增殖发生的。低壁面剪应力(OSS)对于诱导胎儿瓣膜内皮细胞中的经典 Wnt/β-catenin 激活是必要和充分的,而经典 Wnt/β-catenin 激活反过来又驱动 BMP 受体/配体表达和 pSmad1/5 活性,这对于心内膜增殖是必需的。相比之下,心室心内膜细胞表达活跃的 Notch1,但表达最小的 pSmad1/5。暴露于低壁面剪应力的心内膜单层以 Notch1 依赖性方式减弱 Wnt 信号。
低壁面剪应力通过心内膜细胞转导为经典 Wnt 信号程序,调节 BMP 信号和心内膜增殖。相比之下,高壁面剪应力诱导心内膜细胞中的 Notch 信号,抑制 Wnt 信号,从而限制心室表面的生长。我们的结果确定了一种新的机械调节分子开关,其中流体剪切应力驱动瓣膜内皮生长,协调瓣膜沿血流方向的延伸。