Departamento de Química, Instituto de Ciências Exatas (ICEx), Universidade Federal de Minas Gerais (UFMG), 31270-901 Belo Horizonte, MG, Brazil.
Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), 31270-901 Belo Horizonte, MG, Brazil.
Food Chem. 2022 Feb 15;370:131064. doi: 10.1016/j.foodchem.2021.131064. Epub 2021 Sep 6.
Spectrofluorimetry combined with multiway chemometric tools were applied to discriminate pure Aroeira honey samples from samples adulterated with corn syrup, sugar cane molasses and polyfloral honey. Excitation emission spectra were acquired for 232 honey samples by recording excitation from 250 to 500 nm and emission from 270 to 640 nm. Parallel factor analysis (PARAFAC), partial least squares discriminant analysis (PLS-DA), unfolded PLS-DA (UPLS-DA) and multilinear PLS-DA (NPLS-DA) methods were used to decompose the spectral data and build classification models. PLS-DA models presented poor classification rates, demonstrating the limitation of the traditional two-way methods for this dataset, and leading to the development of three-way classification models. Overall, UPLS-DA provided the best classification results with misclassification rates of 4% and 8% for the training and test sets, respectively. These results showed the potential of the proposed method for routine laboratory analysis as a simple, reliable, and affordable tool.
荧光光谱法结合多元化学计量学工具被应用于区分纯罗勒蜂蜜样本与掺入玉米糖浆、甘蔗蜜和百花蜜的样本。通过记录从 250nm 到 500nm 的激发和从 270nm 到 640nm 的发射,对 232 个蜂蜜样本进行了激发发射光谱采集。平行因子分析(PARAFAC)、偏最小二乘判别分析(PLS-DA)、非对称偏最小二乘判别分析(UPLS-DA)和多线性偏最小二乘判别分析(NPLS-DA)方法被用于分解光谱数据并构建分类模型。PLS-DA 模型的分类率较差,表明对于该数据集传统的二维方法存在局限性,导致了三维分类模型的开发。总体而言,UPLS-DA 提供了最佳的分类结果,对于训练集和测试集的误分类率分别为 4%和 8%。这些结果表明,该方法作为一种简单、可靠且经济实惠的工具,具有用于常规实验室分析的潜力。