Suppr超能文献

组合方法在丘陵土壤有机碳制图中的应用。

Application of a combinatorial approach for soil organic carbon mapping in hills.

机构信息

College of Resources, Sichuan Agricultural University, Chengdu, 611130, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.

School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.

出版信息

J Environ Manage. 2021 Dec 15;300:113718. doi: 10.1016/j.jenvman.2021.113718. Epub 2021 Sep 16.

Abstract

Accurate mapping of soil organic carbon (SOC) is critical to improve C management and develop sustainable management policies. However, it is constrained by local variations of the model parameters under complex topography, especially in hills. This study applied a methodological framework to optimize the spatial prediction of SOC in the hilly areas during 1981-2012 by quantifying the relative importance of environmental factors, which include both qualitative factors and quantitative variables. Results showed that SOC increased twofold with a moderate spatial dependence during the past 32 years. During this period, land use patterns, soil groups, topographic factors, and vegetation coverage had significant impacts on the SOC changes (p < 0.01). Specifically, the impact of land use patterns has exceeded the impact of soil groups and became the dominant factor affecting SOC changes. Meanwhile, impacts from the topographic factors and vegetation coverage have substantially declined. Based on those results, a combinatorial approach (LS_RBF_HASM) was developed to map SOC using radial basis function neural network (RBF) and high accuracy surface modelling (HASM), and to generate more detailed spatial mapping relationships between SOC and the affecting factors. Compared with ordinary kriging (OK), land use-soil group units (LS) and HASM combined (LS_HASM), multiple linear regression (MLR) and HASM combined with LS (LS_MLR_HASM); LS_RBF_HASM showed a better performance with a decline of 6.3%-37.7% prediction errors and more accurate spatial patterns due to the quantitative combination of auxiliary environmental variables and more information on the SOC variations within local factors captured by RBF and HASM. Additionally, MLR may partially undermine the relationship of the internal spatial structure due to the highly nonlinear relation between SOC and environmental variables. This methodological framework highlights the optimization of more environmental factors and the calculation of spatial variability within local factors and provides a more accurate approach for SOC mapping in hills.

摘要

准确的土壤有机碳(SOC)制图对于改善碳管理和制定可持续管理政策至关重要。然而,在复杂地形下,特别是在丘陵地区,模型参数的局部变化限制了其空间预测。本研究通过量化环境因素的相对重要性,应用方法框架优化了 1981-2012 年丘陵地区 SOC 的空间预测,其中包括定性因素和定量变量。结果表明,在过去 32 年中,SOC 随着中等空间依赖性增加了一倍。在此期间,土地利用方式、土壤类型、地形因素和植被覆盖度对 SOC 变化有显著影响(p<0.01)。具体而言,土地利用方式的影响已经超过了土壤类型的影响,成为影响 SOC 变化的主导因素。同时,地形因素和植被覆盖度的影响大幅下降。基于这些结果,开发了一种组合方法(LS_RBF_HASM),使用径向基函数神经网络(RBF)和高精度表面建模(HASM)对 SOC 进行制图,并生成 SOC 与影响因素之间更详细的空间映射关系。与普通克里金(OK)、土地利用-土壤类型单元(LS)和 HASM 组合(LS_HASM)、多元线性回归(MLR)和 LS 与 HASM 组合(LS_MLR_HASM)相比,LS_RBF_HASM 表现出更好的性能,预测误差降低了 6.3%-37.7%,空间模式更加准确,这是由于辅助环境变量的定量组合以及 RBF 和 HASM 捕获的局部因素内 SOC 变化的更多信息。此外,由于 SOC 与环境变量之间存在高度非线性关系,MLR 可能会部分破坏内部空间结构的关系。该方法框架突出了更多环境因素的优化和局部因素内空间变异性的计算,为丘陵地区 SOC 制图提供了更准确的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验