Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut.
R.D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut.
Biol Psychiatry. 2021 Dec 1;90(11):756-765. doi: 10.1016/j.biopsych.2021.07.018. Epub 2021 Jul 26.
Chromosome 15q11-q13 duplication syndrome (Dup15q) is a neurogenetic disorder caused by duplications of the maternal copy of this region. In addition to hypotonia, motor deficits, and language impairments, patients with Dup15q commonly meet the criteria for autism spectrum disorder and have a high prevalence of seizures. It is known from mouse models that synaptic impairments are a strong component of Dup15q pathophysiology; however, cellular phenotypes that relate to seizures are less clear. The development of patient-derived induced pluripotent stem cells provides a unique opportunity to study human neurons with the exact genetic disruptions that cause Dup15q.
Here, we explored electrophysiological phenotypes in induced pluripotent stem cell-derived neurons from 4 patients with Dup15q compared with 6 unaffected control subjects, 1 patient with a 15q11-q13 paternal duplication, and 3 patients with Angelman syndrome.
We identified several properties of Dup15q neurons that could contribute to neuronal hyperexcitability and seizure susceptibility. Compared with control neurons, Dup15q neurons had increased excitatory synaptic event frequency and amplitude, increased density of dendritic protrusions, increased action potential firing, and decreased inhibitory synaptic transmission. Dup15q neurons also showed impairments in activity-dependent synaptic plasticity and homeostatic synaptic scaling. Finally, Dup15q neurons showed an increased frequency of spontaneous action potential firing compared with control neurons, in part due to disruption of KCNQ2 potassium channels.
Together, these data point to multiple electrophysiological mechanisms of hyperexcitability that may provide new targets for the treatment of seizures and other phenotypes associated with Dup15q.
15q11-q13 号染色体重复综合征(Dup15q)是一种神经发育障碍,由该区域母源拷贝的重复引起。除了张力减退、运动缺陷和语言障碍外,Dup15q 患者通常符合自闭症谱系障碍的标准,且癫痫发作的患病率较高。从小鼠模型可知,突触损伤是 Dup15q 病理生理学的一个重要组成部分;然而,与癫痫发作相关的细胞表型则不太清楚。患者来源的诱导多能干细胞的发展为研究具有导致 Dup15q 确切遗传缺陷的人类神经元提供了一个独特的机会。
在这里,我们比较了 4 名 Dup15q 患者、6 名未受影响的对照者、1 名 15q11-q13 号染色体父源重复患者和 3 名 Angelman 综合征患者的诱导多能干细胞衍生神经元的电生理表型。
与对照神经元相比,Dup15q 神经元具有以下几个可能导致神经元过度兴奋和癫痫易感性的特性:兴奋性突触事件频率和幅度增加、树突状突起密度增加、动作电位发放增加、抑制性突触传递减少。Dup15q 神经元还表现出活动依赖性突触可塑性和同型突触缩放的障碍。最后,与对照神经元相比,Dup15q 神经元自发性动作电位发放的频率增加,部分原因是 KCNQ2 钾通道的破坏。
这些数据共同指向多种可能导致过度兴奋的电生理机制,这可能为治疗癫痫发作和与 Dup15q 相关的其他表型提供新的靶点。