Guizzardi Giancarlo, Sales Tiago Prince, Almeida João Paulo A, Poels Geert
Conceptual and Cognitive Modeling Research Group (CORE), Free University of Bozen-Bolzano, Bolzano, Italy.
Services & Cybersecurity Group, University of Twente, Enschede, The Netherlands.
Softw Syst Model. 2022;21(4):1363-1387. doi: 10.1007/s10270-021-00919-5. Epub 2021 Sep 15.
In recent years, there has been a growing interest in the use of reference conceptual models to capture information about complex and sensitive business domains (e.g., finance, healthcare, space). These models play a fundamental role in different types of critical semantic interoperability tasks. Therefore, domain experts must be able to understand and reason with their content. In other words, these models need to be . This paper contributes to this goal by proposing a model clustering technique that leverages on the rich semantics of ontology-driven conceptual models (ODCM). In particular, we propose a formal notion of to guide the automated clusterization (or modular breakdown) of conceptual models. Such Relational Contexts capture all the information needed for understanding entities "qua players of roles" in the scope of an objectified (reified) relationship (relator). The paper also presents computational support for automating the identification of Relational Contexts and this modular breakdown procedure. Finally, we report the results of an empirical study assessing the cognitive effectiveness of this approach.
近年来,人们对使用参考概念模型来获取有关复杂和敏感业务领域(如金融、医疗保健、太空)的信息越来越感兴趣。这些模型在不同类型的关键语义互操作性任务中发挥着重要作用。因此,领域专家必须能够理解其内容并进行推理。换句话说,这些模型需要是[此处原文缺失相应内容]。本文通过提出一种利用本体驱动概念模型(ODCM)丰富语义的模型聚类技术,为实现这一目标做出了贡献。特别是,我们提出了一种正式的[此处原文缺失相应内容]概念,以指导概念模型的自动聚类(或模块化分解)。这种关系上下文捕获了在客观化(具体化)关系(关系者)范围内理解实体“作为角色参与者”所需的所有信息。本文还提供了计算支持,以实现关系上下文的自动识别和这种模块化分解过程。最后,我们报告了一项实证研究的结果,该研究评估了这种方法的认知效果。