Suppr超能文献

一种用于综合新型冠状病毒肺炎检测多种诊断结果的贝叶斯方法。

A Bayesian method for synthesizing multiple diagnostic outcomes of COVID-19 tests.

作者信息

Cao Lirong, Zhao Shi, Li Qi, Ling Lowell, Wu William K K, Zhang Lin, Lou Jingzhi, Chong Marc K C, Chen Zigui, Wong Eliza L Y, Zee Benny C Y, Chan Matthew T V, Chan Paul K S, Wang Maggie H

机构信息

JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China.

Clinical Trials and Biostatistics Lab, CUHK Shenzhen Research Institute, Shenzhen, People's Republic of China.

出版信息

R Soc Open Sci. 2021 Sep 15;8(9):201867. doi: 10.1098/rsos.201867. eCollection 2021 Sep.

Abstract

The novel coronavirus disease 2019 (COVID-19) has spread worldwide and threatened human life. Diagnosis is crucial to contain the spread of SARS-CoV-2 infections and save lives. Diagnostic tests for COVID-19 have varying sensitivity and specificity, and the false-negative results would have substantial consequences to patient treatment and pandemic control. To detect all suspected infections, multiple testing is widely used. However, it may be challenging to build an assertion when the testing results are inconsistent. Considering the situation where there is more than one diagnostic outcome for each subject, we proposed a Bayesian probabilistic framework based on the sensitivity and specificity of each diagnostic method to synthesize a posterior probability of being infected by SARS-CoV-2. We demonstrated that the synthesized posterior outcome outperformed each individual testing outcome. A user-friendly web application was developed to implement our analytic framework with free access via http://www2.ccrb.cuhk.edu.hk/statgene/COVID_19/. The web application enables the real-time display of the integrated outcome incorporating two or more tests and calculated based on Bayesian posterior probability. A simulation-based assessment demonstrated higher accuracy and precision of the Bayesian probabilistic model compared with a single-test outcome. The online tool developed in this study can assist physicians in making clinical evaluations by effectively integrating multiple COVID-19 tests.

摘要

2019年新型冠状病毒病(COVID-19)已在全球范围内传播,威胁着人类生命。诊断对于遏制严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染的传播和挽救生命至关重要。COVID-19的诊断测试具有不同的敏感性和特异性,假阴性结果会对患者治疗和疫情控制产生重大影响。为了检测所有疑似感染,广泛采用多次检测。然而,当检测结果不一致时,做出判断可能具有挑战性。考虑到每个受试者有多个诊断结果的情况,我们基于每种诊断方法的敏感性和特异性提出了一个贝叶斯概率框架,以综合SARS-CoV-2感染的后验概率。我们证明,合成的后验结果优于每个单独的检测结果。开发了一个用户友好的网络应用程序,通过http://www2.ccrb.cuhk.edu.hk/statgene/COVID_19/免费访问来实施我们的分析框架。该网络应用程序能够实时显示结合两个或更多测试并基于贝叶斯后验概率计算的综合结果。基于模拟的评估表明,与单次检测结果相比,贝叶斯概率模型具有更高的准确性和精确性。本研究开发的在线工具可以通过有效整合多项COVID-19测试来协助医生进行临床评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验