IEEE J Biomed Health Inform. 2022 Mar;26(3):1103-1115. doi: 10.1109/JBHI.2021.3113668. Epub 2022 Mar 7.
With the development of deep learning and medical imaging technology, many researchers use convolutional neural network(CNN) to obtain deep-level features of medical image in order to better classify Alzheimer's disease (AD) and predict clinical scores. The principal component analysis network (PCANet) is a lightweight deep-learning network that mainly uses principal component analysis (PCA) to generate multilevel filter banks for the centralized learning of samples and then performs binarization and generates blockwise histograms to obtain image features. However, the dimensions of the extracted PCANet features reaching tens of thousands or even hundreds of thousands, and the formation of the multilevel filter banks is sample data dependent, reducing the flexibility of PCANet. In order to solve these problems, in this paper, we propose a data-independent network based on the idea of PCANet, called the nonnegative matrix factorization tensor decomposition network (NMF-TDNet). Specifically, we use nonnegative matrix factorization (NMF) instead of PCA to create multilevel filter banks for sample learning, then uses the learning results to build a higher-order tensor and perform tensor decomposition (TD) to achieve data dimensionality reduction, producing the final image features. Finally, our method use these features as the input of the support vector machine (SVM) for AD classification diagnosis and clinical score prediction. The performance of our method is extensively evaluated on the ADNI-1, ADNI-2 and OASIS datasets. The experimental results show that NMF-TDNet can achieve data dimensionality reduction and the NMF-TDNet features as input achieved superior performance than using PCANet features as input.
随着深度学习和医学成像技术的发展,许多研究人员使用卷积神经网络 (CNN) 从医学图像中获取深层次的特征,以便更好地对阿尔茨海默病 (AD) 进行分类和预测临床评分。主成分分析网络 (PCANet) 是一个轻量级深度学习网络,主要使用主成分分析 (PCA) 为样本的集中学习生成多级滤波器组,然后进行二值化并生成分块直方图以获取图像特征。然而,提取的 PCANet 特征的维度达到数万甚至数十万,并且多级滤波器组的形成是依赖样本数据的,降低了 PCANet 的灵活性。为了解决这些问题,在本文中,我们提出了一种基于 PCANet 思想的数据独立网络,称为非负矩阵分解张量分解网络 (NMF-TDNet)。具体来说,我们使用非负矩阵分解 (NMF) 代替 PCA 为样本学习创建多级滤波器组,然后使用学习结果构建高阶张量并进行张量分解 (TD) 以实现数据降维,生成最终的图像特征。最后,我们的方法将这些特征作为支持向量机 (SVM) 的输入,用于 AD 分类诊断和临床评分预测。我们的方法在 ADNI-1、ADNI-2 和 OASIS 数据集上进行了广泛的性能评估。实验结果表明,NMF-TDNet 可以实现数据降维,并且将 NMF-TDNet 特征作为输入的性能优于将 PCANet 特征作为输入的性能。