基于三维深度监督自适应卷积网络的阿尔茨海默病诊断。
Alzheimer's disease diagnostics by a 3D deeply supervised adaptable convolutional network.
机构信息
Department of Electrical and Computer Engineering, University of Louisville, Louisville, KY.
Electrical and Computer Engineering Department, Abu Dhabi University, Abu Dhabi, UAE,
出版信息
Front Biosci (Landmark Ed). 2018 Jan 1;23(3):584-596. doi: 10.2741/4606.
Early diagnosis is playing an important role in preventing progress of the Alzheimer's disease (AD). This paper proposes to improve the prediction of AD with a deep 3D Convolutional Neural Network (3D-CNN), which can show generic features capturing AD biomarkers extracted from brain images, adapt to different domain datasets, and accurately classify subjects with improved fine-tuning method. The 3D-CNN is built upon a convolutional autoencoder, which is pre-trained to capture anatomical shape variations in structural brain MRI scans for source domain. Fully connected upper layers of the 3D-CNN are then fine-tuned for each task-specific AD classification in target domain. In this paper, deep supervision algorithm is used to improve the performance of already proposed 3D Adaptive CNN. Experiments on the ADNI MRI dataset without skull-stripping preprocessing have shown that the proposed 3D Deeply Supervised Adaptable CNN outperforms several proposed approaches, including 3D-CNN model, other CNN-based methods and conventional classifiers by accuracy and robustness. Abilities of the proposed network to generalize the features learnt and adapt to other domains have been validated on the CADDementia dataset.
早期诊断在预防阿尔茨海默病(AD)的进展中起着重要作用。本文提出了一种改进 AD 预测的方法,使用深度 3D 卷积神经网络(3D-CNN),它可以从脑图像中提取 AD 生物标志物,显示通用特征,适应不同的领域数据集,并通过改进的微调方法准确分类。3D-CNN 基于卷积自动编码器构建,该自动编码器经过预训练,可以从结构脑 MRI 扫描中捕获解剖形状变化,以适应源域。然后,3D-CNN 的全连接上层将针对目标域中的每个特定 AD 分类任务进行微调。在本文中,深度监督算法用于改进已经提出的 3D 自适应 CNN 的性能。在没有颅骨剥离预处理的 ADNI MRI 数据集上进行的实验表明,所提出的 3D 深度监督自适应 CNN 在准确性和稳健性方面优于几种提出的方法,包括 3D-CNN 模型、其他基于 CNN 的方法和传统分类器。所提出的网络在 CADDementia 数据集上验证了其泛化所学到的特征和适应其他领域的能力。