Suppr超能文献

利用集合统计建模和随机森林方法,从卫星遥感数据、气象变量和土地利用数据估算月均 PM 浓度。

Estimating monthly PM concentrations from satellite remote sensing data, meteorological variables, and land use data using ensemble statistical modeling and a random forest approach.

机构信息

Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Taiwan.

Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Taiwan.

出版信息

Environ Pollut. 2021 Dec 15;291:118159. doi: 10.1016/j.envpol.2021.118159. Epub 2021 Sep 14.

Abstract

Fine particulate matter (PM) is associated with various adverse health outcomes and poses serious concerns for public health. However, ground monitoring stations for PM measurements are mostly installed in population-dense or urban areas. Thus, satellite retrieved aerosol optical depth (AOD) data, which provide spatial and temporal surrogates of exposure, have become an important tool for PM estimates in a study area. In this study, we used AOD estimates of surface PM together with meteorological and land use variables to estimate monthly PM concentrations at a spatial resolution of 3 km over Taiwan Island from 2015 to 2019. An ensemble two-stage estimation procedure was proposed, with a generalized additive model (GAM) for temporal-trend removal in the first stage and a random forest model used to assess residual spatiotemporal variations in the second stage. We obtained a model-fitting R of 0.98 with a root mean square error (RMSE) of 1.40 μg/m. The leave-one-out cross-validation (LOOCV) R with seasonal stratification was 0.82, and the RMSE was 3.85 μg/m, whereas the R and RMSE obtained by using the pure random forest approach produced R and RMSE values of 0.74 and 4.60 μg/m, respectively. The results indicated that the ensemble modeling approach had a higher predictive ability than the pure machine learning method and could provide reliable PM estimates over the entire island, which has complex terrain in terms of land use and topography.

摘要

细颗粒物 (PM) 与各种健康不良后果有关,对公共健康构成严重威胁。然而,用于 PM 测量的地面监测站大多安装在人口密集或城市地区。因此,卫星反演的气溶胶光学深度 (AOD) 数据提供了暴露的时空替代物,已成为研究区域中 PM 估计的重要工具。在这项研究中,我们使用了地表 PM 的 AOD 估计值以及气象和土地利用变量,以在 2015 年至 2019 年期间,以 3 公里的空间分辨率估算台湾岛的每月 PM 浓度。提出了一种集成两阶段估计程序,第一阶段使用广义加性模型 (GAM) 去除时间趋势,第二阶段使用随机森林模型评估剩余的时空变化。我们得到的模型拟合 R 值为 0.98,均方根误差 (RMSE) 为 1.40μg/m。带有季节分层的留一法交叉验证 (LOOCV) R 值为 0.82,RMSE 为 3.85μg/m,而使用纯随机森林方法得到的 R 和 RMSE 值分别为 0.74 和 4.60μg/m。结果表明,与纯机器学习方法相比,集成建模方法具有更高的预测能力,可以在整个岛屿上提供可靠的 PM 估计,该岛屿在土地利用和地形方面具有复杂的地形。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验