Suppr超能文献

阐明单原子 Pd 在电催化脱氯中的作用。

Elucidating the Role of Single-Atom Pd for Electrocatalytic Hydrodechlorination.

机构信息

Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, P. R. China.

Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States.

出版信息

Environ Sci Technol. 2021 Oct 5;55(19):13306-13316. doi: 10.1021/acs.est.1c04294. Epub 2021 Sep 21.

Abstract

In this study, we loaded Pd catalysts onto a reduced graphene oxide (rGO) support in an atomically dispersed fashion [i.e., Pd single-atom catalysts (SACs) on rGO or Pd/rGO] via a facile and scalable synthesis based on anchor-site and photoreduction techniques. The as-synthesized Pd/rGO significantly outperformed the Pd nanoparticle (Pd) counterparts in the electrocatalytic hydrodechlorination of chlorinated phenols. Downsizing Pd to Pd leads to a substantially higher Pd atomic efficiency (14 times that of Pd), remarkably reducing the cost for practical applications. The unique single-atom architecture of Pd additionally affects the desorption energy of the intermediate, suppressing the catalyst poisoning by Cl, which is a prevalent challenge with Pd. Characterization and experimental results demonstrate that the superior performance of Pd/rGO originates from (1) enhanced interfacial electron transfer through Pd-O bonds due to the electronic metal-support interaction and (2) increased atomic H (H*) utilization efficiency by inhibiting H evolution on Pd. This work presents an important example of how the unique geometric and electronic structure of SACs can tune their catalytic performance toward beneficial use in environmental remediation applications.

摘要

在这项研究中,我们通过基于锚定位点和光还原技术的简便且可扩展的合成方法,将 Pd 催化剂以原子分散的方式负载到还原氧化石墨烯(rGO)载体上[即 rGO 上的 Pd 单原子催化剂(SACs)或 Pd/rGO]。在电催化氯代酚加氢脱氯反应中,所合成的 Pd/rGO 明显优于 Pd 纳米颗粒(Pd)对照物。将 Pd 缩小到 Pd 会导致 Pd 原子效率显著提高(是 Pd 的 14 倍),从而大大降低了实际应用的成本。Pd 的独特单原子结构还会影响中间产物的解吸能,抑制 Cl 引起的催化剂中毒,这是 Pd 面临的一个普遍挑战。表征和实验结果表明,Pd/rGO 的优异性能源于(1)通过 Pd-O 键增强界面电子转移,这是由于电子-载体相互作用,以及(2)通过抑制 Pd 上的 H 演化来提高原子 H(H*)利用率。这项工作提供了一个重要的例子,说明了 SACs 的独特几何和电子结构如何调节其催化性能,有利于在环境修复应用中使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验