Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
Environ Sci Technol. 2024 Nov 19;58(46):20739-20750. doi: 10.1021/acs.est.4c07923. Epub 2024 Oct 14.
Electrocatalytic hydrodechlorination is a promising approach for simultaneous pollutant purification and valorization. However, the lack of electrocatalysts with high catalytic activity and selectivity limits its application. Here, we propose a palladium-palladium oxide (Pd-PdO) heterostructure for efficient electrocatalytic hydrodechlorination of recalcitrant chlorophenols and selective formation of phenol with superior Pd-mass activity (1.35 min mg), which is 4.4 times of commercial Pd/C and about 10-100 times of reported Pd-based catalysts. The Pd-PdO heterostructure is stable in real water matrices and achieves selective phenol recovery (>99%) from the chlorophenol mixture and efficient detoxification along chlorophenol removal. Experimental results and computational modeling reveal that the adsorption/desorption behaviors of zerovalent Pd and PdO sites in the Pd-PdO heterostructure are optimized and a synergy is realized to promote atomic hydrogen (H*) generation, transfer, and utilization: H* is efficiently generated at zerovalent Pd sites, transferred to PdO sites, and eventually consumed in the dechlorination reaction at PdO sites. This work provides a promising strategy to realize the synergy of Pd with different valence states in the metal-metal oxide heterostructure for simultaneous decontamination, detoxification, and resource recovery from halogenated organic pollutants.
电催化加氢脱氯是一种很有前途的同时净化和增值污染物的方法。然而,缺乏具有高催化活性和选择性的电催化剂限制了它的应用。在这里,我们提出了一种钯-氧化钯(Pd-PdO)异质结构,用于高效电催化加氢脱氯难处理的氯酚,并选择性地形成酚,具有优异的 Pd 质量活性(1.35 min mg),是商业 Pd/C 的 4.4 倍,约为报道的 Pd 基催化剂的 10-100 倍。Pd-PdO 异质结构在实际水基质中稳定,并能从氯酚混合物中选择性地回收酚(>99%),同时有效解毒并去除氯酚。实验结果和计算模型表明,Pd-PdO 异质结构中零价 Pd 和 PdO 位点的吸附/解吸行为得到了优化,并实现了协同作用,从而促进了原子氢(H*)的生成、转移和利用:H*在零价 Pd 位点高效生成,转移到 PdO 位点,最终在 PdO 位点的脱氯反应中消耗。这项工作为实现金属-金属氧化物异质结构中不同价态的 Pd 协同作用,从而同时从卤代有机污染物中进行净化、解毒和资源回收提供了一种很有前途的策略。