Patil Supriya A, Bui Hoa Thi, Hussain Sajjad, Rabani Iqra, Seo Yongho, Jung Jongwan, Shrestha Nabeen K, Kim Hyungsang, Im Hyunsik
Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea.
Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viê.t, Cau Giay, Ha Noi, Vietnam.
Dalton Trans. 2021 Sep 21;50(36):12723-12729. doi: 10.1039/d1dt01855h.
Hydrogen generation during wastewater treatment has remained a long-standing challenge for the environment preservation welfare. In the present work, we have fabricated a promising bifunctional thin film-based catalyst for hydrogen generation with concurrent wastewater treatment. The prepared catalyst film is a vertically oriented thin SnS (tin monosulfide) nanosheet array on a Ni-foam (SnS/NF) obtained a solution process, demonstrating a promising electrocatalytic activity towards the generation of green H fuel at the cathodic side and the decomposition of urea waste at the anodic side. Notably, while assembling two identical electrodes as cathode and anode together with a reference electrode (, SnS/NF∥SnS/NF RHE assembly) in 1 M KOH aqueous electrolyte containing 0.33 M urea, the electrolyzer electrolyzed urea at a lower cell potential of 1.37 and 1.43 V ( RHE) to deliver a current density of 10 mA cm and 50 mA cm, respectively, for the decomposition of urea at the anodic SnS/NF electrode and green hydrogen fuel generation at the cathodic SnS/NF electrode. This activity on electrocatalytic urea decomposition lies within the best performance to those of the previously reported sulfide-based and other catalytic materials. The promising catalytic activities of the SnS catalyst film are attributed to its combined effect of self-standing nanosheet array morphology and high crystallinity, which provides abundant active sites and a facile charge transfer path between the nanosheet arrays and the electrolyte. Thus, the present work offers a green avenue to the waste-urea treatment in water and sustainable hydrogen energy production.
在废水处理过程中产生氢气一直是环境保护领域长期面临的挑战。在本研究中,我们制备了一种有前景的基于双功能薄膜的催化剂,用于在处理废水的同时产生氢气。所制备的催化剂薄膜是通过溶液法在泡沫镍上生长的垂直取向的超薄硫化亚锡(SnS)纳米片阵列(SnS/NF),在阴极侧对绿色氢燃料的产生以及阳极侧尿素废物的分解均表现出有前景的电催化活性。值得注意的是,在含有0.33 M尿素的1 M KOH水溶液电解质中,将两个相同的电极分别作为阴极和阳极,并与参比电极组装在一起(即SnS/NF∥SnS/NF RHE组件)时,该电解槽在较低的电池电位1.37 V和1.43 V(相对于可逆氢电极)下分别电解尿素,在阳极的SnS/NF电极上分解尿素以及在阴极的SnS/NF电极上产生绿色氢燃料,电流密度分别为10 mA cm²和50 mA cm²。这种电催化尿素分解的活性处于先前报道的硫化物基及其他催化材料的最佳性能范围内。SnS催化剂薄膜具有有前景的催化活性,这归因于其自立式纳米片阵列形态和高结晶度的综合作用,这为纳米片阵列与电解质之间提供了丰富的活性位点和便捷的电荷转移路径。因此,本研究为水中尿素废物的处理以及可持续氢能生产提供了一条绿色途径。