Xia Chenghui, Tamarat Philippe, Hou Lei, Busatto Serena, Meeldijk Johannes D, de Mello Donega Celso, Lounis Brahim
LP2N, Université de Bordeaux, Talence F-33405, France.
LP2N, Institut d'Optique and CNRS, Talence F-33405, France.
ACS Nano. 2021 Nov 23;15(11):17573-17581. doi: 10.1021/acsnano.1c04909. Epub 2021 Sep 21.
Semiconductor copper indium sulfide quantum dots are emerging as promising alternatives to cadmium- and lead-based chalcogenides in solar cells, luminescent solar concentrators, and deep-tissue bioimaging due to their inherently lower toxicity and outstanding photoluminescence properties. However, the nature of their emission pathways remains a subject of debate. Using low-temperature single quantum dot spectroscopy on core-shell copper indium sulfide nanocrystals, we observe two subpopulations of particles with distinct spectral features. The first class shows sharp resolution-limited emission lines that are attributed to zero-phonon recombination lines of a long-lived band-edge exciton. Such emission results from the perfect passivation of the copper indium sulfide core by the zinc sulfide shell and points to an inversion in the band-edge hole levels. The second class exhibits ultrabroad spectra regardless of the temperature, which is a signature of the extrinsic self-trapping of the hole assisted by defects in imperfectly passivated quantum dots.
半导体硫化铜铟量子点作为基于镉和铅的硫族化物在太阳能电池、发光太阳能聚光器和深层组织生物成像中的有前景的替代物正在兴起,这是由于其固有的低毒性和出色的光致发光特性。然而,它们的发射途径的本质仍然是一个有争议的话题。通过对核壳硫化铜铟纳米晶体进行低温单量子点光谱分析,我们观察到具有不同光谱特征的两类粒子。第一类显示出尖锐的分辨率限制发射线,这归因于长寿命带边激子的零声子复合线。这种发射是由于硫化锌壳对硫化铜铟核的完美钝化以及带边空穴能级的反转导致的。第二类无论温度如何都表现出超宽光谱,这是不完全钝化的量子点中缺陷辅助空穴的外在自陷的特征。