Suppr超能文献

使用简单电化学传感器与机器学习对马来酰肼进行智能分析。

Intelligent analysis of maleic hydrazide using a simple electrochemical sensor coupled with machine learning.

机构信息

College of Software, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China.

Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China.

出版信息

Anal Methods. 2021 Oct 14;13(39):4662-4673. doi: 10.1039/d1ay01261d.

Abstract

A simple electrochemical sensing platform based on a low-cost disposable laser-induced porous graphene (LIPG) flexible electrode for the intelligent analysis of maleic hydrazide (MH) in potatoes and peanuts coupled with machine learning (ML) was successfully designed. The LIPG electrode was patterned by a simple one-step laser-induced procedure on commercial polyimide film using a computer-controlled direct laser writing micromachining system and displayed excellent flexibility, 3D porous structure, large specific surface area, and preferable conductivity. A data partitioning technique was proposed for the optimal MH concentration ranges by selecting the size of datasets, including the size of the training set and the size of the test set combined with the performance metrics of ML models. Different algorithms such as artificial neural networks (ANN), random forest (RF), and least squares support vector machine (LS-SVM) were selected to build the ML models. Three ML models were evaluated, and the LS-SVM model displayed unique superiority. Both the recoveries and RSD of practical application were further measured to assess the feasibility of the selected LS-SVM model. This will have important theoretical and practical significance for the intelligent analysis of harmful residuals in agro-product safety using an electrochemical sensing platform.

摘要

基于低成本一次性激光诱导多孔石墨烯(LIPG)柔性电极的简易电化学传感平台,结合机器学习(ML),成功设计用于智能分析土豆和花生中的马来酰肼(MH)。LIPG 电极通过在商业聚酰亚胺薄膜上使用计算机控制的直接激光写入微加工系统进行简单的一步激光诱导程序进行图案化,显示出优异的柔韧性、3D 多孔结构、大比表面积和良好的导电性。通过选择数据集的大小,包括训练集的大小和测试集的大小,并结合 ML 模型的性能指标,提出了一种数据分区技术,以确定 MH 的最佳浓度范围。选择了人工神经网络(ANN)、随机森林(RF)和最小二乘支持向量机(LS-SVM)等不同的算法来构建 ML 模型。评估了三个 ML 模型,LS-SVM 模型显示出独特的优势。进一步测量实际应用的回收率和 RSD,以评估所选 LS-SVM 模型的可行性。这对于使用电化学传感平台进行农产品安全中有害残留的智能分析具有重要的理论和实际意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验