Suppr超能文献

中国青岛 2014-2018 年大气污染与猩红热的关联:定量分析。

The association between ambient air pollution and scarlet fever in Qingdao, China, 2014-2018: a quantitative analysis.

机构信息

Department of Acute Infectious Diseases, Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Prevention Medicine, Qingdao City, Shandong Province, People's Republic of China.

Qingdao Women and Children's Hospital, Qingdao University, No.6 Tongfu Road, Qingdao City, 266000, Shandong Province, People's Republic of China.

出版信息

BMC Infect Dis. 2021 Sep 21;21(1):987. doi: 10.1186/s12879-021-06674-8.

Abstract

BACKGROUND

We conducted a distributed lag non-linear time series analysis to quantify the association between air pollution and scarlet fever in Qingdao city during 2014-2018.

METHODS

A distributed lag non-linear model (DLNM) combined with a generalized additive mixed model (GAMM) was applied to quantify the distributed lag effects of air pollutions on scarlet fever, with daily incidence of scarlet fever as the dependent variable and air pollutions as the independent variable adjusted for potential confounders.

RESULTS

A total of 6316 cases of scarlet fever were notified, and there were 376 days occurring air pollution during the study period. Scarlet fever was significantly associated with air pollutions at a lag of 7 days with different relative risk (RR) of air pollution degrees [1.172, 95% confidence interval (CI): 1.038-1.323 in mild air pollution; 1.374, 95% CI 1.078-1.749 in moderate air pollution; 1.610, 95% CI 1.163-2.314 in severe air pollution; 1.887, 95% CI 1.163-3.061 in most severe air pollution].

CONCLUSIONS

Our findings show that air pollution is positively associated with scarlet fever in Qingdao, and the risk of scarlet fever could be increased along with the degrees of air pollution. It contributes to developing strategies to prevent and reduce health impact from scarlet fever and other non-vaccine-preventable respiratory infectious diseases in air polluted areas.

摘要

背景

本研究采用分布滞后非线性时间序列分析方法,定量探讨了 2014-2018 年期间青岛市空气污染与猩红热之间的关系。

方法

采用分布滞后非线性模型(DLNM)结合广义相加混合模型(GAMM),定量分析空气污染对猩红热的滞后效应,以猩红热的日发病率为因变量,以空气污染为自变量,并调整了潜在混杂因素。

结果

共报告猩红热病例 6316 例,研究期间共有 376 天发生空气污染。猩红热与空气污染存在滞后 7 天的关联,不同空气污染程度的相对风险(RR)不同[轻度空气污染为 1.172(95%CI:1.038-1.323);中度空气污染为 1.374(95%CI:1.078-1.749);重度空气污染为 1.610(95%CI:1.163-2.314);极重度空气污染为 1.887(95%CI:1.163-3.061)]。

结论

本研究结果表明,青岛市空气污染与猩红热呈正相关,猩红热的发病风险可能随空气污染程度的增加而增加。这有助于制定在空气污染地区预防和减少猩红热和其他非疫苗可预防的呼吸道传染病的健康影响的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e51/8456591/ba89bab76f26/12879_2021_6674_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验