Universidade Federal de Lavras, Departamento de Ciência do Solo, Caixa Postal 3037, 37200-900 Lavras, MG, Brazil.
An Acad Bras Cienc. 2021 Sep 17;93(4):e20200646. doi: 10.1590/0001-3765202120200646. eCollection 2021.
Portable X-ray fluorescence (pXRF) spectrometry offers valuable information for prediction models of soil fertility attributes spatial variation, although this approach is yet scarce in tropical regions. This study aims to predict and build spatial variability maps of soil pH, remaining phosphorus (P-Rem), soil organic matter (SOM) and sum of bases (SB) using pXRF results through stepwise multiple linear regression (SMLR) and Random Forest (RF) in a highly variable tropical area. Composite samples from soil A horizon were collected at 90 points throughout the campus of the Federal University of Lavras, Minas Gerais, Brazil, for pH, P-Rem, SOM, SB and pXRF analyses. RF predictions showed the highest accuracies, especially for P-Rem and SB (R² values of 0.66 and 0.55, respectively). Attributes that showed higher R² in punctual predictions also exhibited higher R² in spatial predictions. Data obtained from pXRF in tandem with RF can be used to assist prediction models for soil fertility attributes, consequently enabling the digital mapping of such attributes and helping to improve the knowledge about the spatial variability of such attributes in soils of tropical climate. This technique can therefore assist in the identification and orientation of adequate management practices in tropical agricultural practices.
便携式 X 射线荧光 (pXRF) 光谱分析可为预测土壤肥力属性空间变异的模型提供有价值的信息,尽管这种方法在热带地区还很少见。本研究旨在通过逐步多元线性回归 (SMLR) 和随机森林 (RF),利用 pXRF 结果预测和绘制巴西米纳斯吉拉斯州拉夫拉斯联邦大学园区内高度可变的热带地区土壤 pH 值、残余磷 (P-Rem)、土壤有机质 (SOM) 和碱基总和 (SB) 的空间变异性图。从土壤 A 层采集了 90 个点的复合样本,用于 pH 值、P-Rem、SOM、SB 和 pXRF 分析。RF 预测显示出最高的准确性,特别是对于 P-Rem 和 SB(分别为 0.66 和 0.55 的 R² 值)。在单点预测中 R² 值较高的属性在空间预测中也表现出较高的 R² 值。与 RF 结合使用的 pXRF 数据可用于辅助土壤肥力属性的预测模型,从而实现这些属性的数字制图,并有助于提高对热带气候土壤中这些属性空间变异性的认识。因此,该技术可以帮助识别和指导热带农业实践中的适当管理措施。