Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany; Division of Surface Physics, Department of Physics and Earth Sciences, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany.
Leipzig University, Felix-Bloch-Institute for Solid State Physics, Linnéstraße 5, 04103, Leipzig, Germany.
Acta Biomater. 2022 Mar 1;140:219-232. doi: 10.1016/j.actbio.2021.09.025. Epub 2021 Sep 20.
Energetic electrons have recently evolved as a powerful tool for crosslinking bio-derived hydrogels without the need for adding potentially hazardous reagents. Application of this approach allows for synthesis of biomimetic collagen-derived networks of highly tunable properties and functionalization. Yet, the underlying reaction kinetics are still not sufficiently established at this point. While hydroxyl radicals are generated by energetic electron-induced hydrolysis of water and play a key role in introducing covalent bonds between network fibers, a detailed mechanistic understanding would significantly increase applicability. We present a comprehensive analysis of central aspects of the reactivity between the hydroxyl radical (OH) and collagen, elastin, glycine (Gly) and l-lysine (Lys). Pulse radiolysis (PR), solid state nuclear magnetic resonance (NMR), ultraviolet-visible absorption spectroscopy (UV/VIS) and electron spray ionization mass spectrometry (ESI-MS) shine light on distinct features of the crosslinking process. These highlight retained protein backbone integrity in collagen and elastin whilst Lys's ability to form several imine bonded Lys-Lys-species suggests striking similarities to crosslinking via lysyl oxidase catalysis in vivo. Thus, energetic electron based crosslinking opens the venue for customized hybrid gels of outstanding biomimicry and -compatibility. STATEMENT OF SIGNIFICANCE: Energetic electron beam treatment constitutes a highly attractive approach to establish chemical bonds between (bio) molecules. Although a convincing number of publications showed the versatility regarding crosslinking of bioderived hydrogels, insights into the underlying chemistry are still unestablished at this point. The present work unravels the mechanistics of energetic electron induced processes in collagen and elastin hydrogels as well as several abundant amino acids in aqueous solution. As key finding we demonstrate, that i) the connection between polymer chains is dominated by amino acid side chain interaction and ii) two single l-lysine molecules form an imine bond between the terminal amino group of one molecule and the delta carbon of the second molecule. We also consider the formation of H-bonds as a second crosslinking pathway. These findings open up for advanced, optionally spatially resolved biomaterials design.
高能电子最近已成为一种强大的工具,可用于交联生物衍生的水凝胶,而无需添加潜在危险的试剂。这种方法的应用允许合成具有高度可调性质和功能化的仿生胶原衍生网络。然而,在这一点上,基础反应动力学仍然没有得到充分确立。虽然羟基自由基是由高能电子诱导水的水解产生的,并在网络纤维之间引入共价键方面发挥关键作用,但详细的机械理解将显著提高适用性。我们全面分析了羟基自由基(OH)与胶原、弹性蛋白、甘氨酸(Gly)和赖氨酸(Lys)之间反应的核心方面。脉冲辐射分解(PR)、固态核磁共振(NMR)、紫外可见吸收光谱(UV/VIS)和电子喷雾电离质谱(ESI-MS)揭示了交联过程的明显特征。这些特征突出了胶原和弹性蛋白中保留的蛋白质骨架完整性,而赖氨酸形成几种亚胺键赖氨酸-赖氨酸物种的能力表明,与体内赖氨酸氧化酶催化的交联具有惊人的相似性。因此,基于高能电子的交联为具有出色仿生和生物相容性的定制混合凝胶开辟了途径。
高能电子束处理构成了在(生物)分子之间建立化学键的极具吸引力的方法。尽管大量出版物显示了交联生物衍生水凝胶的多功能性,但在这一点上,对基础化学的了解仍未建立。本工作揭示了胶原和弹性蛋白水凝胶以及水溶液中几种丰富氨基酸中高能电子诱导过程的机制。作为关键发现,我们证明了 i)聚合物链之间的连接主要由氨基酸侧链相互作用决定,ii)两个单个的 l-赖氨酸分子在一个分子的末端氨基和第二个分子的δ碳原子之间形成亚胺键。我们还考虑了氢键作为第二种交联途径。这些发现为高级、可选的空间分辨生物材料设计开辟了道路。