Suppr超能文献

西红花酸生产中为获得更宽的底物谱而设计的 CCD2 接入隧道。

CCD2 Access Tunnel Design for a Broader Substrate Profile in Crocetin Production.

机构信息

Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.

出版信息

J Agric Food Chem. 2021 Oct 6;69(39):11626-11636. doi: 10.1021/acs.jafc.1c04588. Epub 2021 Sep 23.

Abstract

Crocetin, a high-value apocarotenoid in saffron, is widely applied to the fields of food and medicine. However, the existing method of obtaining crocetin through large-scale cultivation is far from meeting the market demand. Microbial synthesis of crocetin is a potential alternative to traditional resources, and it is found that carotenoid cleavage dioxygenase (CCD) is the critical enzyme to synthesize crocetin. So, in this study, we used "hybrid-tunnel" engineering to obtain variants of -derived CCD2, essential for zeaxanthin conversion into crocetin, with a broader substrate specificity and higher catalytic efficiency. Variants including S323A, with a lower charge bias and a larger tunnel size than the wild-type, showed a 5-fold higher crocetin titer in yeast-based fermentations. S323A could also convert the β-carotene substrate to crocetin dialdehyde and exhibited a 12.83-fold greater catalytic efficiency (/) toward zeaxanthin than the wild-type . This strategy enabled the production of 107 mg/L crocetin in 5 L fed-batch fermentation, higher than that previously reported. Our findings demonstrate that engineering access tunnels to expand the substrate profile by protein design represents a viable strategy to refine the catalytic properties of enzymes across a range of applications.

摘要

西红花中的一种高附加值的类胡萝卜素——西红花酸,广泛应用于食品和医药领域。然而,通过大规模种植获得西红花酸的现有方法远远不能满足市场需求。微生物合成西红花酸是传统资源的潜在替代方法,研究发现类胡萝卜素裂解双加氧酶(CCD)是合成西红花酸的关键酶。因此,在本研究中,我们使用“混合隧道”工程获得了 - 衍生的 CCD2 的变体,该变体对于将玉米黄质转化为西红花酸至关重要,具有更广泛的底物特异性和更高的催化效率。与野生型相比,变体 S323A 的电荷偏差更低,隧道尺寸更大,在基于酵母的发酵中,西红花酸的产量提高了 5 倍。S323A 还可以将 β-胡萝卜素底物转化为西红花酸二醛,对玉米黄质的催化效率(/)比野生型高 12.83 倍。该策略使 5L 分批补料发酵中能够生产 107mg/L 的西红花酸,高于之前的报道。我们的研究结果表明,通过蛋白质设计扩大酶的底物谱的隧道工程是一种可行的策略,可以改进酶在各种应用中的催化性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验