Xiao Shuyang, Borisov Vladislav, Gorgen-Lesseux Guilherme, Rommel Sarshad, Song Gyuho, Maita Jessica M, Aindow Mark, Valentí Roser, Canfield Paul C, Lee Seok-Woo
Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, Connecticut 06269-3136, United States.
Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-75120 Uppsala, Sweden.
Nano Lett. 2021 Oct 13;21(19):7913-7920. doi: 10.1021/acs.nanolett.1c01750. Epub 2021 Sep 24.
The maximum recoverable strain of most crystalline solids is less than 1% because plastic deformation or fracture usually occurs at a small strain. In this work, we show that a SrNiP micropillar exhibits pseudoelasticity with a large maximum recoverable strain of ∼14% under uniaxial compression via unique reversible structural transformation, double lattice collapse-expansion that is repeatable under cyclic loading. Its high yield strength (∼3.8 ± 0.5 GPa) and large maximum recoverable strain bring out the ultrahigh modulus of resilience (∼146 ± 19 MJ/m), a few orders of magnitude higher than that of most engineering materials. The double lattice collapse-expansion mechanism shows stress-strain behaviors similar to that of conventional shape-memory alloys, such as hysteresis and thermo-mechanical actuation, even though the structural changes involved are completely different. Our work suggests that the discovery of a new class of high-performance ThCrSi-structured materials will open new research opportunities in the field of pseudoelasticity.
大多数晶体固体的最大可恢复应变小于1%,因为塑性变形或断裂通常在小应变时发生。在这项工作中,我们表明,通过独特的可逆结构转变,即双晶格崩塌-膨胀,SrNiP微柱在单轴压缩下表现出伪弹性,其最大可恢复应变约为14%,且在循环加载下可重复。其高屈服强度(约3.8±0.5 GPa)和大的最大可恢复应变带来了超高的回弹模量(约146±19 MJ/m³),比大多数工程材料高几个数量级。双晶格崩塌-膨胀机制显示出与传统形状记忆合金相似的应力-应变行为,如滞后和热机械驱动,尽管所涉及的结构变化完全不同。我们的工作表明,一类新型高性能ThCrSi结构材料的发现将为伪弹性领域开辟新的研究机会。