Suppr超能文献

增强大肠杆菌伴侣蛋白 DnaJ 的活性由尾部超酸性小肽。

Potentiation of the activity of Escherichia coli chaperone DnaJ by tailing hyper-acidic minipeptides.

机构信息

Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming 650500, China.

NHC Key Laboratory of Drug Addiction Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, China.

出版信息

J Biotechnol. 2021 Nov 20;341:86-95. doi: 10.1016/j.jbiotec.2021.09.012. Epub 2021 Sep 24.

Abstract

The chaperone network plays an essential role in cellular protein homeostasis. However, some core components often coaggregate with misfolded proteins for sequestration and dysfunction, leading to abnormal cell proteostasis, aggregation-associated disorders, and poor solubility of overexpressed recombinant proteins. Among them, DnaJ or its ortholog, an obligate co-chaperone in the tripartite DnaK-DnaJ-GrpE system, is of more implications, probably due to its intrinsic propensity for aggregation. Herein, we potentiated the activity of Escherichia coli DnaJ by using hyper-acidified protein fusion strategy. We found DnaJ did possess only a moderate solubility that could be remarkably improved by fusing hyper-acidic minipeptides. Most importantly, we revealed the hyper-acidified DnaJ with a fusion tail could outperform its native form (significantly up to 2.1-fold) to enhance the solubility of target proteins and meanwhile appropriately impart them an elevated activity. These results suggest the hyper-acidified DnaJs can chaperone target proteins with correct folding into a truly soluble and active form. Moreover, we showed these hyper-acidified DnaJ variants could surpass its prototype to confer E. coli or yeast an enhanced heat tolerance, and DnaJ itself could be solubilized by its hyper-acidified fusion cognates. Finally, we discussed the overall mechanism for DnaJ activity potentiation mediated by hyper-acidic tailing fusion.

摘要

伴侣蛋白网络在细胞蛋白质动态平衡中起着至关重要的作用。然而,一些核心成分经常与错误折叠的蛋白质共同聚集,从而进行隔离和功能失调,导致细胞蛋白质动态平衡异常、聚集相关疾病以及过表达重组蛋白的溶解度差。其中,DnaJ 或其同源物,三组分 DnaK-DnaJ-GrpE 系统中的必需共伴侣,具有更多的意义,可能是由于其内在的聚集倾向。在此,我们使用超酸化蛋白融合策略增强了大肠杆菌 DnaJ 的活性。我们发现 DnaJ 仅具有中等的可溶性,通过融合超酸性的小肽可以显著提高其可溶性。最重要的是,我们揭示了带有融合尾巴的超酸化 DnaJ 可以比其天然形式(显著提高 2.1 倍)更好地增强目标蛋白的可溶性,同时适当赋予它们更高的活性。这些结果表明,超酸化的 DnaJs 可以将靶蛋白正确折叠成真正可溶性和活性的形式。此外,我们表明这些超酸化的 DnaJ 变体可以超越其原型,赋予大肠杆菌或酵母更高的耐热性,并且 DnaJ 本身可以通过其超酸化融合同源物进行可溶性化。最后,我们讨论了由超酸性尾巴融合介导的 DnaJ 活性增强的总体机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验