Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Malaysia.
Department of Statistics, 34998Pukyong National University, South Korea.
Stat Methods Med Res. 2021 Nov;30(11):2485-2502. doi: 10.1177/09622802211037072. Epub 2021 Sep 27.
A consequence of using a parametric frailty model with nonparametric baseline hazard for analyzing clustered time-to-event data is that its regression coefficient estimates could be sensitive to the underlying frailty distribution. Recently, there has been a proposal for specifying both the baseline hazard and the frailty distribution nonparametrically, and estimating the unknown parameters by the maximum penalized likelihood method. Instead, in this paper, we propose the nonparametric maximum likelihood method for a general class of nonparametric frailty models, i.e. models where the frailty distribution is completely unspecified but the baseline hazard can be either parametric or nonparametric. The implementation of the estimation procedure can be based on a combination of either the Broyden-Fletcher-Goldfarb-Shanno or expectation-maximization algorithm and the constrained Newton algorithm with multiple support point inclusion. Simulation studies to investigate the performance of estimation of a regression coefficient by several different model-fitting methods were conducted. The simulation results show that our proposed regression coefficient estimator generally gives a reasonable bias reduction when the number of clusters is increased under various frailty distributions. Our proposed method is also illustrated with two data examples.
使用具有非参数基线风险的参数脆弱性模型来分析聚类时间事件数据的一个结果是,其回归系数估计可能对潜在的脆弱性分布敏感。最近,有人提议同时对基线风险和脆弱性分布进行非参数指定,并通过最大惩罚似然法估计未知参数。相反,在本文中,我们为一般类别的非参数脆弱性模型提出了非参数最大似然法,即脆弱性分布完全未指定但基线风险可以是参数的或非参数的。估计过程的实现可以基于 Broyden-Fletcher-Goldfarb-Shanno 或期望最大化算法与具有多个支持点包含的约束牛顿算法的组合。进行了几项不同的模型拟合方法的回归系数估计的估计性能的模拟研究。模拟结果表明,当在各种脆弱性分布下增加聚类数时,我们提出的回归系数估计器通常会给出合理的偏差减少。我们还通过两个数据示例说明了我们的方法。