Suppr超能文献

对杏仁高级选择和品种的抗性及其与黄曲霉毒素生物防治策略的相互作用。

Resistance to and in Almond Advanced Selections and Cultivars and Its Interaction with the Aflatoxin Biocontrol Strategy.

机构信息

Department of Agronomy, Maria de Maeztu Excellence Unit, University of Córdoba, 14071 Córdoba, Spain.

Department of Biology, College of Science and Mathematics, California State University, Fresno, CA 93740, U.S.A.

出版信息

Plant Dis. 2022 Feb;106(2):504-509. doi: 10.1094/PDIS-05-21-0892-RE. Epub 2022 Feb 5.

Abstract

Aflatoxin contamination of almond kernels, caused by and , is a severe concern for growers because of its high toxicity. In California, the global leader of almond production, aflatoxin can be managed by applying the biological control strain AF36 of and selecting resistant cultivars. Here, we classified the almond genotypes by K-Means cluster analysis into three groups (susceptible [S], moderately susceptible [MS], or resistant [R]) based on aflatoxin content of inoculated kernels. The protective effects of the shell and seedcoat in preventing aflatoxin contamination were also examined. The presence of intact shells reduced aflatoxin contamination >100-fold The seedcoat provided a layer of protection but not complete protection. In kernel inoculation assays, none of the studied almond genotypes showed a total resistance to the pathogen. However, nine traditional cultivars and four advanced selections were classified as R. Because these advanced selections contained germplasm derived from peach, we compared the kernel resistance of three peach cultivars to that shown by kernels of an R (Sonora) and an S (Carmel) almond cultivar and five pistachio cultivars. Overall, peach kernels were significantly more resistant to the pathogen than almond kernels, which were more resistant than pistachio kernels. Finally, we studied the combined effect of the cultivar resistance and the biocontrol strain AF36 in limiting aflatoxin contamination. For this, we coinoculated almond kernels of R Sonora and S Carmel with AF36 72 h before or 48 h after inoculating with an aflatoxin-producing strain of . The percentage of aflatoxin reduction by AF36 strain was greater in kernels of Carmel (98%) than in those of Sonora (83%). Cultivar resistance also affected the kernel colonization by the biological control strain. AF36 strain limited aflatoxin contamination in almond kernels even when applied 48 h after the aflatoxin-producing strain. Our results show that biocontrol combined with the use of cultivars with resistance to aflatoxin contamination can result in a more robust protection strategy than the use of either practice in isolation.

摘要

杏仁核中的黄曲霉毒素污染,由 和 引起,对种植者来说是一个严重的问题,因为它的毒性很高。在加利福尼亚州,作为杏仁生产的全球领导者,通过应用 的生物防治菌株 AF36 和选择抗性品种,可以对黄曲霉毒素进行管理。在这里,我们根据接种的杏仁核中黄曲霉毒素的含量,通过 K-Means 聚类分析将杏仁基因型分为三组(易感[S]、中度易感[MS]或抗性[R])。还检查了壳和种皮在防止黄曲霉毒素污染方面的保护作用。完整的壳存在使黄曲霉毒素污染减少了 100 多倍,种皮提供了一层保护,但并非完全保护。在核接种试验中,没有研究的杏仁基因型对病原体表现出完全抗性。然而,有 9 个传统品种和 4 个先进的选择被归类为 R。由于这些先进的选择含有来自桃的种质,我们比较了三个桃品种的核抗性与 R(索诺拉)和 S(卡梅尔)杏仁品种以及五个开心果品种的核抗性。总的来说,桃核对病原体的抗性明显高于杏仁核,而杏仁核的抗性又高于开心果核。最后,我们研究了品种抗性和生物防治菌株 AF36 联合限制黄曲霉毒素污染的效果。为此,我们在接种产黄曲霉毒素菌株 72 小时前或 48 小时后,将 R 索诺拉和 S 卡梅尔的杏仁核与生物防治菌株 AF36 共同接种。AF36 菌株对卡梅尔(98%)杏仁核中黄曲霉毒素的减少百分比大于索诺拉(83%)杏仁核。品种抗性也影响生物防治菌株对核的定殖。即使在接种产黄曲霉毒素菌株 48 小时后,AF36 菌株也能限制杏仁核中的黄曲霉毒素污染。我们的结果表明,生物防治与使用对黄曲霉毒素污染具有抗性的品种相结合,比单独使用任何一种方法都能产生更稳健的保护策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验