文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

铁的循环利用面面观。

The Multiple Facets of Iron Recycling.

机构信息

Laboratory of Iron Homeostasis, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland.

出版信息

Genes (Basel). 2021 Aug 30;12(9):1364. doi: 10.3390/genes12091364.


DOI:10.3390/genes12091364
PMID:34573346
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8469827/
Abstract

The production of around 2.5 million red blood cells (RBCs) per second in erythropoiesis is one of the most intense activities in the body. It continuously consumes large amounts of iron, approximately 80% of which is recycled from aged erythrocytes. Therefore, similar to the "making", the "breaking" of red blood cells is also very rapid and represents one of the key processes in mammalian physiology. Under steady-state conditions, this important task is accomplished by specialized macrophages, mostly liver Kupffer cells (KCs) and splenic red pulp macrophages (RPMs). It relies to a large extent on the engulfment of red blood cells via so-called erythrophagocytosis. Surprisingly, we still understand little about the mechanistic details of the removal and processing of red blood cells by these specialized macrophages. We have only started to uncover the signaling pathways that imprint their identity, control their functions and enable their plasticity. Recent findings also identify other myeloid cell types capable of red blood cell removal and establish reciprocal cross-talk between the intensity of erythrophagocytosis and other cellular activities. Here, we aimed to review the multiple and emerging facets of iron recycling to illustrate how this exciting field of study is currently expanding.

摘要

在红细胞生成中,每秒大约产生 250 万个红细胞,这是体内最活跃的活动之一。它不断消耗大量的铁,其中约 80%是从衰老的红细胞中回收的。因此,类似于“生成”,红细胞的“破坏”也非常迅速,是哺乳动物生理学的关键过程之一。在稳定状态下,这个重要的任务是由专门的巨噬细胞完成的,主要是肝脏库普弗细胞(KCs)和脾脏红髓巨噬细胞(RPMs)。它在很大程度上依赖于通过所谓的红细胞吞噬作用来吞噬红细胞。令人惊讶的是,我们仍然不太了解这些专门的巨噬细胞清除和处理红细胞的机制细节。我们才刚刚开始揭示赋予它们身份、控制它们功能并使它们具有可塑性的信号通路。最近的发现还确定了其他能够清除红细胞的髓样细胞类型,并建立了红细胞吞噬作用的强度与其他细胞活动之间的相互交流。在这里,我们旨在回顾铁回收的多个和新兴方面,以说明这一令人兴奋的研究领域目前是如何扩展的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f87/8469827/aee49d3b9b19/genes-12-01364-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f87/8469827/e8497effec03/genes-12-01364-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f87/8469827/57a98e590ab2/genes-12-01364-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f87/8469827/9db5543787e2/genes-12-01364-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f87/8469827/73d667bf8687/genes-12-01364-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f87/8469827/aee49d3b9b19/genes-12-01364-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f87/8469827/e8497effec03/genes-12-01364-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f87/8469827/57a98e590ab2/genes-12-01364-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f87/8469827/9db5543787e2/genes-12-01364-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f87/8469827/73d667bf8687/genes-12-01364-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f87/8469827/aee49d3b9b19/genes-12-01364-g005.jpg

相似文献

[1]
The Multiple Facets of Iron Recycling.

Genes (Basel). 2021-8-30

[2]
Impaired iron recycling from erythrocytes is an early hallmark of aging.

Elife. 2023-1-31

[3]
Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression and down-regulated by hepcidin.

Proc Natl Acad Sci U S A. 2005-2-1

[4]
A physiological model to study iron recycling in macrophages.

Exp Cell Res. 2005-10-15

[5]
[Erythrophagocytosis and recycling of heme iron in normal and pathological conditions; regulation by hepcidin].

Transfus Clin Biol. 2005-6

[6]
Physiologically aged red blood cells undergo erythrophagocytosis in vivo but not in vitro.

Haematologica. 2012-2-13

[7]
Dysfunction of the heme recycling system in heme oxygenase 1-deficient mice: effects on macrophage viability and tissue iron distribution.

Blood. 2010-9-15

[8]
Macrophages and Iron Metabolism.

Microbiol Spectr. 2016-10

[9]
Interleukin-33 Signaling Controls the Development of Iron-Recycling Macrophages.

Immunity. 2020-4-8

[10]
Interactions between isolated hepatocytes and Kupffer cells in iron metabolism: a possible role for ferritin as an iron carrier protein.

Hepatology. 1988

引用本文的文献

[1]
Cell death and iron deposition in the liver in two murine models of acute radiation syndrome.

PLoS One. 2025-5-29

[2]
HFE-Related Hemochromatosis May Be a Primary Kupffer Cell Disease.

Biomedicines. 2025-3-10

[3]
Crosstalk between ferroptosis and innate immune in diabetic kidney disease: mechanisms and therapeutic implications.

Front Immunol. 2025-2-28

[4]
An overview of hereditary spherocytosis and the curative effects of splenectomy.

Front Physiol. 2025-2-11

[5]
Mineral Supplements in Ageing.

Subcell Biochem. 2024

[6]
Social defeat stress impairs systemic iron metabolism by activating the hepcidin-ferroportin axis.

FASEB Bioadv. 2024-7-2

[7]
High-altitude hypoxia exposure inhibits erythrophagocytosis by inducing macrophage ferroptosis in the spleen.

Elife. 2024-4-17

[8]
Unraveling the Role of Maternal Serum Ferritin Levels in Preterm Delivery: A Comprehensive Review.

Cureus. 2024-2-20

[9]
LINE-1 global DNA methylation, iron homeostasis genes, sex and age in sudden sensorineural hearing loss (SSNHL).

Hum Genomics. 2023-12-14

[10]
Hypobaric hypoxia induces iron mobilization from liver and spleen and increases serum iron via activation of ghrelin/GHSR1a/MAPK signalling pathway in mice.

Sci Rep. 2023-11-20

本文引用的文献

[1]
IL-18 Promotes Erythrophagocytosis and Erythrocyte Degradation by M1 Macrophages in a Calcific Microenvironment.

Can J Cardiol. 2021-9

[2]
PPARγ is essential for the development of bone marrow erythroblastic island macrophages and splenic red pulp macrophages.

J Exp Med. 2021-5-3

[3]
A role of PIEZO1 in iron metabolism in mice and humans.

Cell. 2021-2-18

[4]
Phagocytic activity of splenic macrophages is enhanced and accompanied by cytosolic alkalinization in TRPM7 kinase-dead mice.

FEBS J. 2021-6

[5]
Inflammation Unrestrained by SIRPα Induces Secondary Hemophagocytic Lymphohistiocytosis Independent of IFN-γ.

J Immunol. 2020-11-15

[6]
Stressed erythrophagocytosis induces immunosuppression during sepsis through heme-mediated STAT1 dysregulation.

J Clin Invest. 2021-1-4

[7]
LC3-Associated Phagocytosis (LAP): A Potentially Influential Mediator of Efferocytosis-Related Tumor Progression and Aggressiveness.

Front Oncol. 2020-8-5

[8]
Hemolysis in the spleen drives erythrocyte turnover.

Blood. 2020-10-1

[9]
Hemolysis transforms liver macrophages into antiinflammatory erythrophagocytes.

J Clin Invest. 2020-10-1

[10]
Differential regulation of hepatic physiology and injury by the TAM receptors Axl and Mer.

Life Sci Alliance. 2020-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索