Suppr超能文献

基于显著性检测和辅助信息的自适应分块压缩视频感知

Adaptive Block-Based Compressed Video Sensing Based on Saliency Detection and Side Information.

作者信息

Wang Wei, Wang Jianming, Chen Jianhua

机构信息

School of Information Science and Engineering, Yunnan University, Kunming 650000, China.

出版信息

Entropy (Basel). 2021 Sep 8;23(9):1184. doi: 10.3390/e23091184.

Abstract

The setting of the measurement number for each block is very important for a block-based compressed sensing system. However, in practical applications, we only have the initial measurement results of the original signal on the sampling side instead of the original signal itself, therefore, we cannot directly allocate the appropriate measurement number for each block without the sparsity of the original signal. To solve this problem, we propose an adaptive block-based compressed video sensing scheme based on saliency detection and side information. According to the Johnson-Lindenstrauss lemma, we can use the initial measurement results to perform saliency detection and then obtain the saliency value for each block. Meanwhile, a side information frame which is an estimate of the current frame is generated on the reconstruction side by the proposed probability fusion model, and the significant coefficient proportion of each block is estimated through the side information frame. Both the saliency value and significant coefficient proportion can reflect the sparsity of the block. Finally, these two estimates of block sparsity are fused, so that we can simultaneously use intra-frame and inter-frame correlation for block sparsity estimation. Then the measurement number of each block can be allocated according to the fusion sparsity. Besides, we propose a global recovery model based on weighting, which can reduce the block effect of reconstructed frames. The experimental results show that, compared with existing schemes, the proposed scheme can achieve a significant improvement in peak signal-to-noise ratio (PSNR) at the same sampling rate.

摘要

对于基于块的压缩感知系统而言,为每个块设置测量数量非常重要。然而,在实际应用中,我们在采样端仅拥有原始信号的初始测量结果而非原始信号本身,因此,在不知道原始信号稀疏性的情况下,我们无法直接为每个块分配合适的测量数量。为解决此问题,我们提出一种基于显著性检测和边信息的自适应块基压缩视频感知方案。根据约翰逊 - 林登施特劳斯引理,我们可以利用初始测量结果进行显著性检测,进而获得每个块的显著性值。同时,通过所提出的概率融合模型在重建端生成一个作为当前帧估计的边信息帧,并通过该边信息帧估计每个块的显著系数比例。显著性值和显著系数比例都能反映块的稀疏性。最后,将这两个块稀疏性估计进行融合,以便我们能够同时利用帧内和帧间相关性进行块稀疏性估计。然后根据融合后的稀疏性为每个块分配测量数量。此外,我们提出一种基于加权的全局恢复模型,它可以减少重建帧的块效应。实验结果表明,与现有方案相比,所提方案在相同采样率下能在峰值信噪比(PSNR)方面实现显著提升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a1/8470148/27b84ca89777/entropy-23-01184-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验