Suppr超能文献

关于动力系统的极大半稳定定律与极值

On Max-Semistable Laws and Extremes for Dynamical Systems.

作者信息

Holland Mark P, Sterk Alef E

机构信息

College of Engineering, Mathematics and Physical Sciences, Harrison Building, Streatham Campus, University of Exeter, North Park Road, Exeter EX4 4QF, UK.

Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands.

出版信息

Entropy (Basel). 2021 Sep 9;23(9):1192. doi: 10.3390/e23091192.

Abstract

Suppose (f,X,μ) is a measure preserving dynamical system and ϕ:X→R a measurable observable. Let Xi=ϕ∘fi-1 denote the time series of observations on the system, and consider the maxima process Mn:=max{X1,…,Xn}. Under linear scaling of Mn, its asymptotic statistics are usually captured by a three-parameter generalised extreme value distribution. This assumes certain regularity conditions on the measure density and the observable. We explore an alternative parametric distribution that can be used to model the extreme behaviour when the observables (or measure density) lack certain regular variation assumptions. The relevant distribution we study arises naturally as the limit for max-semistable processes. For piecewise uniformly expanding dynamical systems, we show that a max-semistable limit holds for the (linear) scaled maxima process.

摘要

假设((f,X,\mu))是一个保测动力系统,且(\phi:X\rightarrow\mathbb{R})是一个可测可观测量。令(X_i = \phi\circ f^{i - 1})表示该系统上的观测时间序列,并考虑最大值过程(M_n := \max{X_1,\ldots,X_n})。在(M_n)的线性缩放情况下,其渐近统计通常由一个三参数广义极值分布来刻画。这假定了关于测度密度和可观测量的某些正则性条件。我们探索一种替代的参数分布,当可观测量(或测度密度)缺乏某些正则变化假设时,可用于对极端行为进行建模。我们研究的相关分布自然地作为最大半稳定过程的极限出现。对于分段一致扩张动力系统,我们表明(线性)缩放后的最大值过程存在最大半稳定极限。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79ea/8468561/dd81daa48323/entropy-23-01192-g001.jpg

相似文献

1
On Max-Semistable Laws and Extremes for Dynamical Systems.
Entropy (Basel). 2021 Sep 9;23(9):1192. doi: 10.3390/e23091192.
2
Towards a General Theory of Extremes for Observables of Chaotic Dynamical Systems.
J Stat Phys. 2014;154(3):723-750. doi: 10.1007/s10955-013-0914-6. Epub 2014 Jan 24.
3
Correlation dimension and phase space contraction via extreme value theory.
Chaos. 2018 Apr;28(4):041103. doi: 10.1063/1.5027386.
4
Extreme value theory for singular measures.
Chaos. 2012 Jun;22(2):023135. doi: 10.1063/1.4718935.
6
An overview of the extremal index.
Chaos. 2019 Feb;29(2):022101. doi: 10.1063/1.5079656.
7
Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control.
PLoS One. 2016 Feb 26;11(2):e0150171. doi: 10.1371/journal.pone.0150171. eCollection 2016.
8
Order-parameter scaling in fluctuation-dominated phase ordering.
Phys Rev E. 2016 Jan;93(1):012117. doi: 10.1103/PhysRevE.93.012117. Epub 2016 Jan 11.
9
An identity on order statistics of a set of random variables.
J Multivar Anal. 2014 Aug 1;129:243-244. doi: 10.1016/j.jmva.2014.04.016.
10
EXTREME VALUE THEORY WITH OPERATOR NORMING.
Extremes (Boston). 2013 Dec 1;16(4):407-428. doi: 10.1007/s10687-012-0166-x.

本文引用的文献

1
Extreme value theory for singular measures.
Chaos. 2012 Jun;22(2):023135. doi: 10.1063/1.4718935.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验