Holland Mark P, Sterk Alef E
College of Engineering, Mathematics and Physical Sciences, Harrison Building, Streatham Campus, University of Exeter, North Park Road, Exeter EX4 4QF, UK.
Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands.
Entropy (Basel). 2021 Sep 9;23(9):1192. doi: 10.3390/e23091192.
Suppose (f,X,μ) is a measure preserving dynamical system and ϕ:X→R a measurable observable. Let Xi=ϕ∘fi-1 denote the time series of observations on the system, and consider the maxima process Mn:=max{X1,…,Xn}. Under linear scaling of Mn, its asymptotic statistics are usually captured by a three-parameter generalised extreme value distribution. This assumes certain regularity conditions on the measure density and the observable. We explore an alternative parametric distribution that can be used to model the extreme behaviour when the observables (or measure density) lack certain regular variation assumptions. The relevant distribution we study arises naturally as the limit for max-semistable processes. For piecewise uniformly expanding dynamical systems, we show that a max-semistable limit holds for the (linear) scaled maxima process.
假设((f,X,\mu))是一个保测动力系统,且(\phi:X\rightarrow\mathbb{R})是一个可测可观测量。令(X_i = \phi\circ f^{i - 1})表示该系统上的观测时间序列,并考虑最大值过程(M_n := \max{X_1,\ldots,X_n})。在(M_n)的线性缩放情况下,其渐近统计通常由一个三参数广义极值分布来刻画。这假定了关于测度密度和可观测量的某些正则性条件。我们探索一种替代的参数分布,当可观测量(或测度密度)缺乏某些正则变化假设时,可用于对极端行为进行建模。我们研究的相关分布自然地作为最大半稳定过程的极限出现。对于分段一致扩张动力系统,我们表明(线性)缩放后的最大值过程存在最大半稳定极限。