Suppr超能文献

在超高周疲劳(VHCF)状态下,从增材制造Ti6Al4V试样中的人工制造缺陷开始的内部裂纹萌生与扩展

Internal Crack Initiation and Growth Starting from Artificially Generated Defects in Additively Manufactured Ti6Al4V Specimen in the VHCF Regime.

作者信息

Wickmann Carsten, Benz Christopher, Heyer Horst, Witte-Bodnar Kerstin, Schäfer Jan, Sander Manuela

机构信息

Institute of Structural Mechanics, University of Rostock, Albert-Einstein-Str. 2, 18059 Rostock, Germany.

Institute of Physics, University of Rostock, Albert Einstein-Str. 23-24, 18059 Rostock, Germany.

出版信息

Materials (Basel). 2021 Sep 15;14(18):5315. doi: 10.3390/ma14185315.

Abstract

The aim of the present work was to investigate the 'fine granular area' (FGA) formation based on artificially generated internal defects in additively manufactured Ti6Al4V specimens in the early stage of fatigue crack growth in the 'very high cycle fatigue' (VHCF) regime. Fatigue tests were performed with constant amplitude at pure tension-compression loading ( = -1) using an ultrasonic fatigue testing setup. Failed specimens were investigated using optical microscopy, high-resolution 'scanning electron microscopy' (SEM), and 'focused ion beam' (FIB) techniques. Further, the paper introduces alternative proposals to identify the FGA layer beneath the fracture surfaces in terms of the 'cross section polishing' (CSP) technique and metallic grindings with special attention paid to the crack origin, the surrounding microstructure, and the expansion of the nanograin layer beneath the fracture surface. Different existing fracture mechanical approaches were applied to evaluate if an FGA formation is possible. Moreover, the results were discussed in comparison to the experimental findings.

摘要

本研究的目的是在“超高周疲劳”(VHCF) regime下,研究增材制造Ti6Al4V试样在疲劳裂纹扩展早期基于人工制造的内部缺陷形成的“细颗粒区”(FGA)。使用超声疲劳试验装置在纯拉压载荷(R = -1)下进行恒幅疲劳试验。使用光学显微镜、高分辨率“扫描电子显微镜”(SEM)和“聚焦离子束”(FIB)技术对失效试样进行研究。此外,本文介绍了基于“横截面抛光”(CSP)技术和金属研磨来识别断口表面下方FGA层的替代方案,特别关注裂纹起源、周围微观结构以及断口表面下方纳米晶粒层的扩展。应用不同的现有断裂力学方法来评估FGA形成的可能性。此外,将结果与实验结果进行了比较讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85f6/8468648/a6222667f795/materials-14-05315-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验