Applied Geotechnology Group, CINTECX, Universidade de Vigo, 36310 Vigo, Spain.
Sensors (Basel). 2021 Sep 8;21(18):6007. doi: 10.3390/s21186007.
Individual tree (IT) segmentation is crucial for forest management, supporting forest inventory, biomass monitoring or tree competition analysis. Light detection and ranging (LiDAR) is a prominent technology in this context, outperforming competing technologies. Aerial laser scanning (ALS) is frequently used for forest documentation, showing good point densities at the tree-top surface. Even though under-canopy data collection is possible with multi-echo ALS, the number of points for regions near the ground in leafy forests drops drastically, and, as a result, terrestrial laser scanners (TLS) may be required to obtain reliable information about tree trunks or under-growth features. In this work, an IT extraction method for terrestrial backpack LiDAR data is presented. The method is based on DBSCAN clustering and cylinder voxelization of the volume, showing a high detection rate (∼90%) for tree locations obtained from point clouds, and low commission and submission errors (accuracy over 93%). The method includes a sensibility assessment to calculate the optimal input parameters and adapt the workflow to real-world data. This approach shows that forest management can benefit from IT segmentation, using a handheld TLS to improve data collection productivity.
个体树木 (IT) 分割对于森林管理至关重要,支持森林清查、生物量监测或树木竞争分析。激光雷达 (LiDAR) 是该领域的一项突出技术,优于竞争技术。航空激光扫描 (ALS) 常用于森林记录,在树顶表面显示出良好的点密度。尽管多回波 ALS 可用于收集树冠下的数据,但在茂密森林中靠近地面的区域的点数会急剧减少,因此可能需要使用地面激光扫描仪 (TLS) 来获取有关树干或林下特征的可靠信息。在这项工作中,提出了一种用于地面背包式 LiDAR 数据的 IT 提取方法。该方法基于 DBSCAN 聚类和体积的圆柱体体素化,对点云中获取的树木位置具有较高的检测率(约 90%),并且错误率较低(准确率超过 93%)。该方法包括灵敏度评估,以计算最佳输入参数并将工作流程适应实际数据。该方法表明,森林管理可以受益于 IT 分割,使用手持 TLS 来提高数据收集效率。