Suppr超能文献

基于移动背包激光雷达点云的单木分割方法。

Individual Tree Segmentation Method Based on Mobile Backpack LiDAR Point Clouds.

机构信息

Applied Geotechnology Group, CINTECX, Universidade de Vigo, 36310 Vigo, Spain.

出版信息

Sensors (Basel). 2021 Sep 8;21(18):6007. doi: 10.3390/s21186007.

Abstract

Individual tree (IT) segmentation is crucial for forest management, supporting forest inventory, biomass monitoring or tree competition analysis. Light detection and ranging (LiDAR) is a prominent technology in this context, outperforming competing technologies. Aerial laser scanning (ALS) is frequently used for forest documentation, showing good point densities at the tree-top surface. Even though under-canopy data collection is possible with multi-echo ALS, the number of points for regions near the ground in leafy forests drops drastically, and, as a result, terrestrial laser scanners (TLS) may be required to obtain reliable information about tree trunks or under-growth features. In this work, an IT extraction method for terrestrial backpack LiDAR data is presented. The method is based on DBSCAN clustering and cylinder voxelization of the volume, showing a high detection rate (∼90%) for tree locations obtained from point clouds, and low commission and submission errors (accuracy over 93%). The method includes a sensibility assessment to calculate the optimal input parameters and adapt the workflow to real-world data. This approach shows that forest management can benefit from IT segmentation, using a handheld TLS to improve data collection productivity.

摘要

个体树木 (IT) 分割对于森林管理至关重要,支持森林清查、生物量监测或树木竞争分析。激光雷达 (LiDAR) 是该领域的一项突出技术,优于竞争技术。航空激光扫描 (ALS) 常用于森林记录,在树顶表面显示出良好的点密度。尽管多回波 ALS 可用于收集树冠下的数据,但在茂密森林中靠近地面的区域的点数会急剧减少,因此可能需要使用地面激光扫描仪 (TLS) 来获取有关树干或林下特征的可靠信息。在这项工作中,提出了一种用于地面背包式 LiDAR 数据的 IT 提取方法。该方法基于 DBSCAN 聚类和体积的圆柱体体素化,对点云中获取的树木位置具有较高的检测率(约 90%),并且错误率较低(准确率超过 93%)。该方法包括灵敏度评估,以计算最佳输入参数并将工作流程适应实际数据。该方法表明,森林管理可以受益于 IT 分割,使用手持 TLS 来提高数据收集效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/8473060/510618adf31d/sensors-21-06007-g001.jpg

相似文献

1
Individual Tree Segmentation Method Based on Mobile Backpack LiDAR Point Clouds.
Sensors (Basel). 2021 Sep 8;21(18):6007. doi: 10.3390/s21186007.
5
A new method for detecting individual trees in aerial LiDAR point clouds using absolute height maxima.
Environ Monit Assess. 2018 Nov 9;190(12):708. doi: 10.1007/s10661-018-7082-8.
6
Above-ground biomass references for urban trees from terrestrial laser scanning data.
Ann Bot. 2021 Oct 27;128(6):709-724. doi: 10.1093/aob/mcab002.
7
Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR.
Sensors (Basel). 2017 Oct 17;17(10):2371. doi: 10.3390/s17102371.
8
Terrestrial laser scanning: a new standard of forest measuring and modelling?
Ann Bot. 2021 Oct 27;128(6):653-662. doi: 10.1093/aob/mcab111.
9
Applicability of personal laser scanning in forestry inventory.
PLoS One. 2019 Feb 27;14(2):e0211392. doi: 10.1371/journal.pone.0211392. eCollection 2019.

引用本文的文献

1
Individual Segmentation of Intertwined Apple Trees in a Row via Prompt Engineering.
Sensors (Basel). 2025 Jul 31;25(15):4721. doi: 10.3390/s25154721.
2
Forest aboveground biomass estimation based on spaceborne LiDAR combining machine learning model and geostatistical method.
Front Plant Sci. 2024 Dec 11;15:1428268. doi: 10.3389/fpls.2024.1428268. eCollection 2024.
3
Ecotones as Windows into Organismal-to-Biome Scale Responses across Neotropical Forests.
Plants (Basel). 2024 Aug 27;13(17):2396. doi: 10.3390/plants13172396.

本文引用的文献

1
An Improved DBSCAN Method for LiDAR Data Segmentation with Automatic Eps Estimation.
Sensors (Basel). 2019 Jan 5;19(1):172. doi: 10.3390/s19010172.
2
Geographic Object-Based Image Analysis - Towards a new paradigm.
ISPRS J Photogramm Remote Sens. 2014 Jan;87(100):180-191. doi: 10.1016/j.isprsjprs.2013.09.014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验