文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于中央模式发生器的仿壁虎机器人运动控制。

Motion Control of a Gecko-like Robot Based on a Central Pattern Generator.

机构信息

School of Robot Engineering, Yangtze Normal University, Chongqing 408100, China.

School of Mechatronic, Northwestern Polytechnical University, Xi'an 710072, China.

出版信息

Sensors (Basel). 2021 Sep 9;21(18):6045. doi: 10.3390/s21186045.


DOI:10.3390/s21186045
PMID:34577251
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8473384/
Abstract

To solve the problem of the motion control of gecko-like robots in complex environments, a central pattern generator (CPG) network model of motion control was designed. The CPG oscillation model was first constructed using a sinusoidal function, resulting in stable rhythm control signals for each joint of the gecko-like robot. Subsequently, the gecko-like robot successfully walked, crossed obstacles and climbed steps in the vertical plane, based on stable rhythm control signals. Both simulations and experiments validating the feasibility of the proposed CPG motion control model are presented.

摘要

为了解决仿壁虎机器人在复杂环境中的运动控制问题,设计了一种运动控制的中心模式发生器(CPG)网络模型。首先利用正弦函数构建了CPG 振荡模型,为仿壁虎机器人的各个关节产生稳定的节律控制信号。随后,基于稳定的节律控制信号,仿壁虎机器人成功地在垂直平面上行走、跨越障碍物和攀爬台阶。提出的 CPG 运动控制模型的可行性通过仿真和实验进行了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/84079774de41/sensors-21-06045-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/824ebf1d5251/sensors-21-06045-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/b580610e571e/sensors-21-06045-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/ae5f585d3c6e/sensors-21-06045-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/a5dff8ca0f09/sensors-21-06045-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/b1c9a530b68a/sensors-21-06045-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/de7249c0d6f1/sensors-21-06045-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/3bf8f2fc324d/sensors-21-06045-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/70456286ae14/sensors-21-06045-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/68c63ed3ebc6/sensors-21-06045-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/5688899bb941/sensors-21-06045-g010a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/4a48cd312506/sensors-21-06045-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/00404d78249a/sensors-21-06045-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/3b38b49bc3a0/sensors-21-06045-g013a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/d753dd53d6af/sensors-21-06045-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/58e228917c19/sensors-21-06045-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/d855aaa2af4a/sensors-21-06045-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/f21315e4b8ee/sensors-21-06045-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/09f64bf22c30/sensors-21-06045-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/84079774de41/sensors-21-06045-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/824ebf1d5251/sensors-21-06045-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/b580610e571e/sensors-21-06045-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/ae5f585d3c6e/sensors-21-06045-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/a5dff8ca0f09/sensors-21-06045-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/b1c9a530b68a/sensors-21-06045-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/de7249c0d6f1/sensors-21-06045-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/3bf8f2fc324d/sensors-21-06045-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/70456286ae14/sensors-21-06045-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/68c63ed3ebc6/sensors-21-06045-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/5688899bb941/sensors-21-06045-g010a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/4a48cd312506/sensors-21-06045-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/00404d78249a/sensors-21-06045-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/3b38b49bc3a0/sensors-21-06045-g013a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/d753dd53d6af/sensors-21-06045-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/58e228917c19/sensors-21-06045-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/d855aaa2af4a/sensors-21-06045-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/f21315e4b8ee/sensors-21-06045-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/09f64bf22c30/sensors-21-06045-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccf/8473384/84079774de41/sensors-21-06045-g019.jpg

相似文献

[1]
Motion Control of a Gecko-like Robot Based on a Central Pattern Generator.

Sensors (Basel). 2021-9-9

[2]
A gecko-inspired robot with CPG-based neural control for locomotion and body height adaptation.

Bioinspir Biomim. 2022-4-18

[3]
Smooth transition for CPG-based body shape control of a snake-like robot.

Bioinspir Biomim. 2013-12-16

[4]
Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots.

Biol Cybern. 2014-6

[5]
A miniaturized wall-climbing segment robot inspired by caterpillar locomotion.

Bioinspir Biomim. 2017-6-15

[6]
CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots.

IEEE Trans Syst Man Cybern B Cybern. 2011-6

[7]
A Gecko-Inspired Robot with a Flexible Spine Driven by Shape Memory Alloy Springs.

Soft Robot. 2023-8

[8]
Research on control strategy of pneumatic soft bionic robot based on improved CPG.

PLoS One. 2024

[9]
Towards autonomous locomotion: CPG-based control of smooth 3D slithering gait transition of a snake-like robot.

Bioinspir Biomim. 2017-4-4

[10]
Design process and tools for dynamic neuromechanical models and robot controllers.

Biol Cybern. 2017-2

引用本文的文献

[1]
MST-G: Micro Suction Tape Gripper Climbing Robot with Active Detachment Capability.

Sensors (Basel). 2024-12-5

[2]
Design and Analysis of a Bionic Gliding Robotic Dolphin.

Biomimetics (Basel). 2023-4-10

[3]
Neural Network-Based Autonomous Search Model with Undulatory Locomotion Inspired by .

Sensors (Basel). 2022-11-15

本文引用的文献

[1]
Beetle-robot hybrid interaction: sex, lateralization and mating experience modulate behavioural responses to robotic cues in the larger grain borer Prostephanus truncatus (Horn).

Biol Cybern. 2020-10

[2]
The Gait Design and Trajectory Planning of a Gecko-Inspired Climbing Robot.

Appl Bionics Biomech. 2018-4-22

[3]
Central pattern generators for locomotion control in animals and robots: a review.

Neural Netw. 2008-5

[4]
From swimming to walking with a salamander robot driven by a spinal cord model.

Science. 2007-3-9

[5]
Efficient bipedal robots based on passive-dynamic walkers.

Science. 2005-2-18

[6]
How animals move: an integrative view.

Science. 2000-4-7

[7]
Neural basis of rhythmic behavior in animals.

Science. 1980-10-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索