National Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China.
Sensors (Basel). 2022 Nov 15;22(22):8825. doi: 10.3390/s22228825.
() exhibits sophisticated chemotaxis behavior with a unique locomotion pattern using a simple nervous system only and is, therefore, well suited to inspire simple, cost-effective robotic navigation schemes. Chemotaxis in involves two complementary strategies: klinokinesis, which allows reorientation by sharp turns when moving away from targets; and klinotaxis, which gradually adjusts the direction of motion toward the preferred side throughout the movement. In this study, we developed an autonomous search model with undulatory locomotion that combines these two chemotaxis strategies with its body undulatory locomotion. To search for peaks in environmental variables such as chemical concentrations and radiation in directions close to the steepest gradients, only one sensor is needed. To develop our model, we first evolved a central pattern generator and designed a minimal network unit with proprioceptive feedback to encode and propagate rhythmic signals; hence, we realized realistic undulatory locomotion. We then constructed adaptive sensory neuron models following real electrophysiological characteristics and incorporated a state-dependent gating mechanism, enabling the model to execute the two orientation strategies simultaneously according to information from a single sensor. Simulation results verified the effectiveness, superiority, and realness of the model. Our simply structured model exploits multiple biological mechanisms to search for the shortest-path concentration peak over a wide range of gradients and can serve as a theoretical prototype for worm-like navigation robots.
() 表现出复杂的趋化行为,具有独特的运动模式,仅使用简单的神经系统,因此非常适合启发简单、经济高效的机器人导航方案。 涉及两种互补的趋化策略:kinokinesis,当远离目标时允许通过急转弯重新定向;和 klinotaxis,它在整个运动过程中逐渐将运动方向调整到首选侧。 在这项研究中,我们开发了一种具有波动运动的自主搜索模型,该模型将这两种趋化策略与身体的波动运动相结合。 为了在接近最陡梯度的方向上搜索环境变量(如化学浓度和辐射)的峰值,仅需一个传感器。 为了开发我们的模型,我们首先进化了一个中央模式发生器,并设计了一个具有本体感受反馈的最小网络单元来编码和传播节奏信号;因此,我们实现了逼真的波动运动。 然后,我们根据真实的电生理特性构建了自适应感觉神经元模型,并引入了状态相关的门控机制,使模型能够根据单个传感器的信息同时执行两种定向策略。 模拟结果验证了模型的有效性、优越性和真实性。 我们结构简单的模型利用多种生物机制在广泛的梯度范围内搜索最短路径浓度峰值,可作为类似蠕虫的导航机器人的理论原型。