Suppr超能文献

车载自组织网络中多跳广播协议与介质访问控制协议的联合优化

Joint Optimization of Multi-Hop Broadcast Protocol and MAC Protocol in Vehicular Ad Hoc Networks.

作者信息

Pei Zhonghui, Wang Xiaojun, Lei Zhen, Zheng Hongjiang, Du Luyao, Chen Wei

机构信息

School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China.

School of Electronic Engineering, Dublin City University, 9PPR+4F Dublin 9, Ireland.

出版信息

Sensors (Basel). 2021 Sep 11;21(18):6092. doi: 10.3390/s21186092.

Abstract

Beacon messages and emergency messages in vehicular ad hoc networks (VANETs) require a lower delay and higher reliability. The optimal MAC protocol can effectively reduce data collision in VANETs communication, thus minimizing delay and improving reliability. In this paper, we propose a Q-learning MAC protocol based on detecting the number of two-hop neighbors. The number of two-hop neighbors in highway scenarios is calculated with very little overhead using the beacon messages and neighbor locations to reduce the impact of hidden nodes. Vehicle nodes are regarded as agents, using Q-learning and beacon messages to train the near-optimal contention window value of the MAC layer under different vehicle densities to reduce the collision probability of beacon messages. Furthermore, based on the contention window value after training, a multi-hop broadcast protocol combined with contention window adjustment for emergency messages in highway scenarios is proposed to reduce forwarding delay and improve forwarding reliability. We use the trained contention window value and the state information of neighboring vehicles to assign an appropriate forwarding waiting time to the forwarding node. Simulation experiments are conducted to evaluate the proposed MAC protocol and multi-hop broadcast protocol and compare them with other related protocols. The results show that our proposed protocols outperform the other related protocols on several different evaluation metrics.

摘要

车载自组织网络(VANETs)中的信标消息和紧急消息需要更低的延迟和更高的可靠性。最优的介质访问控制(MAC)协议可以有效减少VANETs通信中的数据冲突,从而将延迟降至最低并提高可靠性。在本文中,我们提出了一种基于检测两跳邻居数量的Q学习MAC协议。在高速公路场景中,利用信标消息和邻居位置,以非常低的开销计算两跳邻居的数量,以减少隐藏节点的影响。车辆节点被视为智能体,使用Q学习和信标消息来训练不同车辆密度下MAC层的近似最优竞争窗口值,以降低信标消息的冲突概率。此外,基于训练后的竞争窗口值,提出了一种在高速公路场景中结合竞争窗口调整的多跳广播协议,用于紧急消息,以减少转发延迟并提高转发可靠性。我们利用训练后的竞争窗口值和相邻车辆的状态信息为转发节点分配适当的转发等待时间。进行了仿真实验来评估所提出的MAC协议和多跳广播协议,并将它们与其他相关协议进行比较。结果表明,我们提出的协议在几个不同的评估指标上优于其他相关协议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34ea/8470531/67e67a6434e9/sensors-21-06092-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验