College of Physical Science and Technology, Central China Normal University, NO. 152 Luoyu Road, Wuhan 430079, China.
Key Laboratory of Quark and Lepton Physics (MOE) and College of Physics Science and Technology, Central China Normal University, NO. 152 Luoyu Road, Wuhan 430079, China.
Sensors (Basel). 2021 Sep 11;21(18):6100. doi: 10.3390/s21186100.
In the task of interactive image segmentation, the Inside-Outside Guidance (IOG) algorithm has demonstrated superior segmentation performance leveraging Inside-Outside Guidance information. Nevertheless, we observe that the inconsistent input between training and testing when selecting the inside point will result in significant performance degradation. In this paper, a deep reinforcement learning framework, named Inside Point Localization Network (IPL-Net), is proposed to infer the suitable position for the inside point to help the IOG algorithm. Concretely, when a user first clicks two outside points at the symmetrical corner locations of the target object, our proposed system automatically generates the sequence of movement to localize the inside point. We then perform the IOG interactive segmentation method for precisely segmenting the target object of interest. The inside point localization problem is difficult to define as a supervised learning framework because it is expensive to collect image and their corresponding inside points. Therefore, we formulate this problem as Markov Decision Process (MDP) and then optimize it with Dueling Double Deep Q-Network (D3QN). We train our network on the PASCAL dataset and demonstrate that the network achieves excellent performance.
在交互式图像分割任务中,Inside-Outside Guidance(IOG)算法利用 Inside-Outside Guidance 信息展示出了优越的分割性能。然而,我们观察到在选择内部点时,训练和测试之间输入的不一致会导致性能显著下降。在本文中,我们提出了一个名为 Inside Point Localization Network(IPL-Net)的深度强化学习框架,用于推断内部点的合适位置,以帮助 IOG 算法。具体来说,当用户首次在目标对象的对称角位置点击两个外部点时,我们的系统会自动生成移动序列,以定位内部点。然后,我们执行 IOG 交互式分割方法,精确地分割目标对象。由于收集图像及其对应的内部点成本高昂,因此内部点定位问题难以定义为监督学习框架。因此,我们将此问题表述为马尔可夫决策过程(MDP),并使用双深度 Q 网络(Dueling Double Deep Q-Network,D3QN)对其进行优化。我们在 PASCAL 数据集上训练我们的网络,并证明该网络具有出色的性能。